=0
=A&A =ApJ =ApJS =Appl. Opt.
3D radiative transfer framework II Baron and Hauschildt
We present a general method to calculate radiative transfer including
scattering in the continuum as well as in lines in 3D static atmospheres.
The scattering problem for line transfer is solved via means of an
operator splitting (OS) technique. The formal solution
is based on a long-characteristics method. The approximate
operator is constructed considering nearest
neighbors exactly. The code is parallelized over both wavelength and solid angle
using the MPI library.
We present the results of several test cases with different values of
the thermalization parameter and two choices for the temperature
structure. The results are directly compared to 1D spherical
tests. With our current grid setup the interior resolution is much
lower in 3D than in 1D, nevertheless the 3D results agree very
well with the well-tested 1D calculations. We show that with
relatively simple parallelization that the code scales to very large
number of processors which is mandatory for practical applications.
Advances in modern computers will make realistic 3D radiative transfer
calculations possible in the near future. Our current code scales to
very large numbers of processors, but requires larger memory per
processor at high spatial resolution.
Radiative transfer - Scattering
E. Baron1,2,3 and Peter H. Hauschildt1
Hamburger Sternwarte, Gojenbergsweg 112, 21029 Hamburg, Germany; yeti@hs.uni-hamburg.de - Dept. of Physics and Astronomy, University of Oklahoma, 440 W. Brooks, Rm 100, Norman, OK 73019 USA; baron@nhn.ou.edu - NERSC, Lawrence Berkeley National Laboratory, MS 50F-1650, 1 Cyclotron Rd, Berkeley, CA 94720-8139 USA
Received date Accepted date