next up previous
Next: About this document ...

Parallel Supercomputing In Stellar Atmosphere Simulations




Peter H. Hauschildt
Department of Physics & Astronomy
and
Center for Simulational Physics
The University of Georgia
Athens, GA 30602

in collaboration with
E. Baron (Univ. of OK)
F. Allard (WSU & CNRS/Lyon)
D. Lowenthal (UGA)

Overview

1.
Motivation
2.
The Computational Problem
3.
Solution through parallelization
4.
Parallel algorithms
5.
Conclusions & The Future

Motivation

Radiative Transfer
true cm Assumptions:


Spherically symmetric, special relativistic equation of radiative transfer

The equation of radiative transfer
true cm

\begin{displaymath}
e {\partial I \over \partial r}
 + {\partial \over \partial ...
 ...tial \lambda} \left( \lambda I \right)
 + h I
 = \eta - \chi I \end{displaymath}

with

and


Example for $\eta(r,\lambda)$

\begin{displaymath}
\eta = \kappa B_\lambda(T) 
+ \sigma_e J(\lambda)
+ \kappa_l...
 ...phi(\lambda) \int_0^\infty \varphi(\lambda)J(\lambda)\,d\lambda\end{displaymath}

with

\begin{displaymath}
J(\lambda) = \int_{-1}^1 I(\lambda)\,d\mu\end{displaymath}

Numerical solution:

Statistical Equilibrium Equations
true cm


$\bullet$ Line and continuum scattering prevents the use of the $\Lambda$-iteration for the solution of the rate equations!

Solution of the statistical equilibrium equations:
true cm Operator Splitting method: =0pt

The Computational Problem


1.
input data size

3.
memory/IO requirements

4.
(serial) CPU time

Solution through parallelization
1.
portability issues

2.
memory issues

3.
IO issues

4.
scalability issues

Parallel algorithms
1.
The PHOENIX code

2.
Spectral line selection

3.
Spectral line opacity calculations

4.
Radiative transfer

5.
Parallelizing the wavelength loop

\psfig {file=design.ps,height=\textheight}

Conclusions & The Future


In the Future


 
next up previous
Next: About this document ...
Peter H. Hauschildt
4/27/1999