next up previous
Next: About this document ... Up: Parallel Implementation of the Previous: Summary and Conclusions

References

Allard, F., & Hauschildt, P. H. 1995, ApJ, 445, 433

Allard, F., Hauschildt, P., Alexander, D. R., & Starrfield, S. 1997, ARAA, 36, in press

[Baron et al.(1995)Baron, Hauschildt, Branch, Austin, Garnavich, Ann, Wagner, Filippenko, Matheson, and Liebert]b93j3Baron, E., Hauschildt, P. H., Branch, D., Austin, S., Garnavich, P., Ann, H. B., Wagner, R. M., Filippenko, A. V., Matheson, T., & Liebert, J. 1995, ApJ, 441, 170
Baron, E., Hauschildt, P. H., & Young, T. R. 1995, Physics Reports, 256, 23

[Baron et al.(1996a)Baron, Hauschildt, Branch, Kirshner, and Filippenko]b94i1Baron, E., Hauschildt, P. H., Branch, D., Kirshner, R. P., & Filippenko, A. V. 1996a, MNRAS, 279, 779
Baron, E., Hauschildt, P. H., Nugent, P., & Branch, D. 1996b, MNRAS, 283, 297

[Cowan et al.(1997)Cowan, McWilliam, Sneden, and Burris]cowanetal97Cowan, J. J., McWilliam, A., Sneden, C., & Burris, D. L. 1997, , 480, 246
Gropp, W., Lusk, E., Doss, N., & Skjellum, A. 1996.

MPICH Model MPI Implementation Reference Manual.
Technical report, Argonne National Laboratory, Argonne
Hauschildt, P. H. 1992, JQSRT, 47, 433

Hauschildt, P. H. 1993, JQSRT, 50, 301

[Hauschildt & Baron(1995)Hauschildt and Baron]hbfe295Hauschildt, P. H., & Baron, E. 1995, JQSRT, 54, 987
Hauschildt, P. H., Starrfield, S., Shore, S. N., Allard, F., & Baron, E. 1995, ApJ, 447, 829

[Hauschildt et al.(1996)Hauschildt, Baron, Starrfield, and Allard]phhnovfe296Hauschildt, P. H., Baron, E., Starrfield, S., & Allard, F. 1996, ApJ, 462, 386
Hauschildt, P. H., Baron, E., & Allard, F. 1997, ApJ, 483, 390

[Message Passing Interface Forum(1995)Message Passing Interface Forum]mpistdMessage Passing Interface Forum 1995.
MPI: A Message-Passing Interface Standard, Version 1.1, Knoxville, TN: Univ. of Tennessee
Mihalas, D., & Mihalas, B. W. 1984.
Foundations of Radiation Hydrodynamics, Oxford: Oxford University

Nugent, P., Baron, E., Hauschildt, P., & Branch, D. 1995a, ApJ, 441, L33

[Nugent et al.(1995b)Nugent, Phillips, Baron, Branch, and Hauschildt]nugseq95Nugent, P., Phillips, M., Baron, E., Branch, D., & Hauschildt, P. 1995b, ApJ, 455, L147
Nugent, P., Baron, E., Branch, D., Fisher, A., & Hauschildt, P. 1997, ApJ, 485, in press

[Prochaska & Wolfe(1997)Prochaska and Wolfe]pwlya97Prochaska, J. X., & Wolfe, A. M. 1997, ApJ, 474, 140
Schwarz, G., Hauschildt, P. H., S. Starrfield, E. B., Allard, F., Shore, S., & Sonneborn, G. 1997, MNRAS, 284, 669


 
Figure 1:   The basic design of our parallelization method, groups of processors are divided up into wavelength clusters which will work on individual wavelength points, the wavelength clusters are further divided into worker nodes, where each worker node is assign a set of specific (e.g., spatially distributed) tasks. Our design requires that each worker node on all wavelength clusters work on exactly the same set of tasks, although additional inherently serial operations can be assigned to one particular master worker, or master wavelength cluster. This method reduces communication between clusters to its absolute minimum and allows the maximum speedup.
\begin{figure}
\epsscale{1.0}
\plotone{fig1.eps}\end{figure}


 
Figure:   Pseudo-code for the global layout of PHOENIX. The processing that is required before and after the radiative transfer is indicated. Both pre- and post-processing phases can be executed in parallel and independently for all clusters.
\begin{figure}
\begin{verbatim}
for i := 1 to NUMWAVELENGTHS
 pre_processing: {
...
 ... post_processing: {
 ...
 nlteUpdateRates(...)
 }
 end\end{verbatim}\end{figure}


 
Figure 3:   Scalability of the static Vega model atmosphere test run as function of the number of nodes (processing elements or nodes) used. The y-axis gives the speedup obtained relative to the serial run. The different symbols show the results for different numbers of worker tasks for each wavelength cluster.
\begin{figure}
\epsscale{1.0}

\psfig {file=static.ps,angle=90,clip=,width=\hsize}
\end{figure}


 
Figure 4:   Scalability of the Nova model atmosphere test run as function of the number of nodes (processing elements or nodes) used. The y-axis gives the speedup obtained relative to the serial run. The different symbols show the results for different numbers of worker tasks for each wavelength cluster.
\begin{figure}
\epsscale{1.0}

\psfig {file=nova.ps,angle=90,clip=,width=\hsize}
\end{figure}


 
Figure 5:   Scalability of the Supernova model atmosphere test run as function of the number of nodes (processing elements or nodes) used. The y-axis gives the speedup obtained relative to the serial run. The different symbols show the results for different numbers of worker tasks for each wavelength cluster.
\begin{figure}
\epsscale{1.0}

\psfig {file=sn.ps,angle=90,clip=,width=\hsize}
\end{figure}


next up previous
Next: About this document ... Up: Parallel Implementation of the Previous: Summary and Conclusions
Peter H. Hauschildt
4/27/1999