Einführung in die Astronomie II _{Teil 9}

Peter Hauschildt yeti@hs.uni-hamburg.de

Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg

16. Oktober 2019

Overview part 9

► stellar evolution

- star formation
- evolution after the MS

star formation

- stellar evolution: how stars are "born", "live", and "die"
- ► Sun: vast but not infinite amount of nuclear fuel → cannot shine forever!
- stars must have a "beginning" and an "end"
- ► stellar lifetime very much larger than that of humans → impossible to watch single star lifecycle
- have to piece information together from observations of different stars at different ages

star formation

- where do stars come from?
- interstellar medium: thin gas plus dust particles that "fill" the interstellar space
- \blacktriangleright \rightarrow next chapter
- Example: Orion $nebula \rightarrow cloud$ in interstellar space

Orion nebula

star formation

- in general: interstellar cloud \rightarrow nebula or *nebulosity*
- emission nebula: emits light by itself, shows emission line spectrum of a hot, thin gas (e.g., Orion nebula)
- many emission nebulae are known
- direct evidence for hot gas in interstellar space
- typical temperatures: \approx 10,000 K
- \blacktriangleright typical masses: 100–10,000 M $_{\odot}$
- size of several pc's → density quite low few 1000 H-atoms/cm³ (Earth atmosphere: 10¹⁹ atoms/cm³

Formation of Protostars

protostar:

first stage of a future main-sequence star

- for a protostar to form
 - ightarrow gravity must overwhelm pressure
- $\blacktriangleright \rightarrow \mathsf{cold} \mathsf{ gas} (\mathsf{low} \mathsf{ pressures!})$
- best (only) locations: dark nebulae
 → Barnard objects
- Bok globules: small spherical dark nebulae

Bok globules

Formation of Protostars

- Bok globules look like inner core of Barnard objects
- densities: 100-10000 particles/cm³ (quite high)
- temperatures: 10 K
- \blacktriangleright Barnard objects: few 1000 M $_{\odot}$, 10 pc diameter
- about standard cosmic abundances (74% H, 25% He, 1% rest)
- densest parts can contract by their own gravity
- $\blacktriangleright \rightarrow \mathsf{form} \ \mathsf{protostars}$
- contain enough mass to form multiple protostars
- \blacktriangleright \rightarrow stellar nurseries

Jeans mass !!

- \blacktriangleright spherical cloud, density ρ
- \blacktriangleright gravitationally bound \rightarrow
- virial theorem applies

$$2K+U=0$$

cloud will collapse if

2K < |U|

therefore

3MkT	3	GM^2
$\overline{2\mu m_{\rm H}}$	5	R

with

$$R = \left(\frac{3M}{4\pi\rho}\right)^{1/3}$$

• we have as condition for collapse $M > M_J$ with

$$M_J = \left(\frac{5kT}{6\mu m_{\rm H}}\right)^{3/2} \sqrt{\frac{3}{4\pi\rho}}$$

▶ M_J: Jeans mass

Jeans mass

diffuse cloud

•
$$T = 50 \,\mathrm{K}, \ n = 500 \,\mathrm{cm}^{-3}$$

$$ho
ightarrow
ho = 8.4 imes 10^{-22}\,
m g$$

• $M_J \approx 1500 \,\mathrm{M}_\odot$

10 times larger than typical mass

giant molecular cloud

•
$$T = 150 \,\mathrm{K}, \ n = 10^8 \,\mathrm{cm}^{-3}$$

$$\blacktriangleright~M_{
m J}pprox 17~{
m M}_{\odot}$$

Formation of Protostars

- details described by model calculations (Hayashi):
- initial cool blob of gas, several times the size of the solar system
- pressure too low to counteract gravity
- \blacktriangleright \rightarrow blob contracts
- gravitational energy is converted into thermal energy
- \blacktriangleright \rightarrow gas heats up and begins to glow (thermally)
- Energy transported outward mostly by convection

Formation of Protostars

- ▶ few thousand years after begin of collapse → surface temperatures reach 2000–3000 K
- $\blacktriangleright \text{ still large radius} \rightarrow \text{large luminosity}$
- $\blacktriangleright\,$ Example: 1 M_{\odot} after 1000 years of contraction $\rightarrow\,$ 20 $R_{\odot},\,$ 100 L_{\odot}
- no thermonuclear reactions, all energy comes from the contraction!

pre-MS tracks !!

Formation of Protostars

- \blacktriangleright show evolution as a "track" in the HRD \rightarrow evolutionary track
- ▶ protostars cool when they start to emit light → tracks begin near the right (low temperature) end of the HRD
- \blacktriangleright observations hard \rightarrow light is shrouded by the surrounding dark nebula
- $\blacktriangleright \rightarrow cocoon \ nebula:$ absorbs most of the protostar's light in the visible

Protostars in the Omega nebula

Formation of Protostars

- protostars can be seen in IR wavelengths:
 - absorbed light warms dust in the cocoon nebula to few 100 K
 - warm dust radiates in the IR!
 - cocoon nebula relatively transparent to IR
 - compare visible to IR images!

Mass loss and gain

- formation of stars not simply contraction
- much of the cold dense material is actually ejected from the protostar
- this ejected material can sweep the surrounding clear
- \blacktriangleright \rightarrow protostar can become visible!

T Tauri stars

- protostars with absorption and emission lines
- L changes irregularly within days
- $\blacktriangleright~<3\,M_{\odot}$, $\approx 10^{6}$ years old
- above the MS
- \blacktriangleright emission lines indicate mass $\rm loss$ with 80 km s^{-1} speeds
- $\blacktriangleright\,$ eject 10^{-8} to $10^{-7}\,M_\odot/yr$ (Sun: $10^{-14}\,M_\odot/yr)$
- T Tauri phase can last 10⁷ yr
- $\blacktriangleright \ \rightarrow 1 \, M_{\odot}$ is lost!
- mass of final MS stars can be significantly less than that of the original cloud

T Tauri stars

- ► > 3 M_{\odot} : no T Tauri phase
- but mass loss due to large radiation pressure close to the surface
- \blacktriangleright \rightarrow stellar wind
- bipolar outflow: evidence of opposite jets of gas streaming away with several 100 km s⁻¹
- found in many young stars!
- jets collide with surrounding material
- \blacktriangleright \rightarrow produce high density knots of hot, glowing material
- \blacktriangleright \rightarrow Herbig-Haro objects

Herbig-Haro objects

Protostar

Herbig-Haro objects

- HH objects change position, size, shape, brightness within years
- \blacktriangleright observations \rightarrow all young stars eject material in jets some time during their evolution
- short lived $(10^4 \text{ to } 10^5 \text{ years})$
- but powerful enough to eject more mass than what remains on the MS star!

pre-MS tracks

$1\,M_\odot$ protostar

material is very opaque

- $\blacktriangleright \rightarrow$ energy is more efficiently transported by convection than by radiation
- surface temperature stays roughly constant as the object shrinks
- \blacktriangleright \rightarrow *L* decreases and the track moves downward in the HRD
- same time: internal temperature of protostar increases
- \blacktriangleright \rightarrow material ionizes \rightarrow less opaque

$1\,M_\odot$ protostar

- energy transported by radiation in the inner, ionized parts and by convection in the outer, cooler layers
- overall, this makes it easier for radiation to escape
- \blacktriangleright \rightarrow *L* and surface *T* increase
- after some time, central T reaches $> 10^6$ K
- \blacktriangleright \rightarrow thermonuclear fusion starts
- energy and heat produced eventually stops further contraction
- star reaches hydrostatic equilibrium and settles on the MS

$>4\,M_\odot$ protostar

- contracts and heats much faster
- H-burning starts quicker
- L stabilizes quickly but star continues to shrink to reach final equilibrium
- ▶ T increases at constant $L \rightarrow$ horizontal track in the HRD
- greater mass leads to greater pressure and temperature in the core
- $\blacktriangleright ~\rightarrow$ larger temperature difference compared to $1\,M_{\odot}$ star

$>4\,M_\odot$ protostar

- leads to convective inner regions in massive stars
- $\blacktriangleright\,$ envelope relatively low density and transparent $\rightarrow\,$
- outer layers transport energy by radiation

$< 0.8\,M_\odot$ protostar

- interior temperatures stay too low to completely ionize the interior
- \blacktriangleright \rightarrow remains fully convective
- ▶ if mass is too low ($\approx < 0.07 \, M_{\odot}$) → no H burning will start (too cool)
 - \rightarrow brown dwarf
- intermediate objects to Jovian planets

Protostars

- eventually, stars reach the main sequence and spend most of their lifetime on it
- more massive stars are (much more) luminous than lower mass stars
- ▶ protostars $> 100 M_{\odot}$: become extremely luminous
- internal pressures rise too high for gravity to counteract
- \blacktriangleright \rightarrow outer layers expelled, star disrupted

Protostars

- $\blacktriangleright\,$ MS stars have masses from $\approx 0.08\,M_\odot$ (very frequent) to $100\,M_\odot$ (rare)
- Note: higher mass stars rush through their pre-MS evolution much faster than low mass stars!
- $\blacktriangleright\,$ 20,000 years for 10 $M_{\odot},$ 10 million years for 1 M_{\odot}

MS stars !!

a Mass more than about 4 M_{\odot}

- b Mass between about $4 M_{\odot}$ and 0.8 M_{\odot}
- c Mass less than 0.8 M_☉

- $\blacktriangleright\,$ dark nebulae contain thousands of $\,M_\odot\,$
- \blacktriangleright \rightarrow stars from in *clusters*
- include stars with a range of masses, all formed at about the same time
- \blacktriangleright \rightarrow clusters are useful to observe evolution of stars

- stars within a cluster start to form at the same time
- but they reach the MS at different times
- high-mass stars become quickly extremely luminous O and B stars
- their UV radiation produces H II regions

- Iow mass stars are still evolving toward the MS!
- their evolution can be disturbed by the nearby OB stars
- Example: Eagle nebula: OB stars produce pillars and strip material from the low mass protostars

Eagle nebula

- this can limit the mass that these stars actually reach!
- HRD of young clusters shows the state of evolution of the different masses
- older clusters: massive stars begin to move off the MS!
- can be used to determine age of the cluster!

- open cluster or galactic cluster. loose collection of stars barely bound by gravitation
- stellar association: loose collection of stars not bound by gravitation
- \blacktriangleright stellar association typically dominated by OB stars \rightarrow OB association

Post-MS evolution !!

- Main Sequence (MS): core H-burning
- alters composition of the core!
- ▶ Sun: formed with 74% H, 25% He
- now: more He than H in the core!
- \blacktriangleright \rightarrow H fuel will eventually be exhausted!
- \blacktriangleright \rightarrow main sequence lifetime
- Sun: $\approx 10^{10}$ years

The Sun

Post-MS evolution

- ▶ H burning: 4 H nuclei \rightarrow 1 He nucleus
- reduces number of particles in the core
- core contracts
- T, ρ, P increase!
- ▶ \rightarrow more H burning \rightarrow L increases!
- ▶ radius and *T* (atmosphere) of the star also change!
- ▶ Sun: 40% more *L*, 6% larger radius, +300 K in $T_{\rm eff}$

The Sun

Post-MS evolution

increased core *T* also heats layers just above it
 → H burning starts in the surrounding region
 increases MS lifetime a few million years

Post-MS evolution

lifetime, t, depends strongly on mass of the star

$$t\propto rac{M}{L}$$

► M-L relationship:

$$L \propto M^{3.5}$$

 \blacktriangleright \rightarrow MS lifetime of a star with mass M is

$$t\propto rac{1}{M^{2.5}}$$

massive stars spend only a very short time on the MS

Iow mass stars spend eons on it!

Post-MS evolution !!

core H used up:

- → H burning continues in shell around the core! → shell hydrogen burning
- ▶ end of core H burning increases core T:
- core contracts ... see above
- \blacktriangleright this also increases T in the shell source
- He produced by the shell source rains on the core
- $\blacktriangleright\,$ core of a $1\,M_{\odot}$ stars shrinks to $\approx 1/3$ within a few 100 million years
- $\blacktriangleright\,$ central $\,{\cal T}\,$ increases from $15\times 10^6\,{\rm K}$ to $100\times 10^6\,{\rm K}$

Post-MS tracks

Post-MS evolution

- during this time, L increases substantially
- \blacktriangleright \rightarrow internal pressures rise
- \blacktriangleright \rightarrow the outer layers expand enormously
- $\blacktriangleright \ \rightarrow$ and cool down at the same time to about 3500 K or less
- the star becomes a Red Giant
- envelope only loosely bound
 mass loss via a *stellar wind*
- $\blacktriangleright\,$ material is blown off the star at 10 km s^{-1} at a rate of $10^{-7}\,M_\odot/yr$

Red Giants

Post-MS structure !!

Helium burning

- ► He is useful as nuclear fuel
- however, He burning needs at least 100 million K to start!
- ▶ initially, the core temperature of a RG is too low
- but core contracts due to more He being added and eventually can start *core He burning*:

Helium burning

- first and key reaction: 3 ⁴He to ¹²C: the *triple* α process
- proceeds in 2 steps

 4 He + 4 He $\leftrightarrow ^{8}$ Be 8 Be + 4 He $\leftrightarrow ^{12}$ C + γ

Helium burning

with enough ¹²C around, further α captures can occur simultaneously:

$${}^{12}\mathrm{C} + {}^{4}\mathrm{He} \rightarrow {}^{16}\mathrm{O} + \gamma$$

$${\rm ^{16}O} + {\rm ^4He} \rightarrow {\rm ^{20}Ne} + \gamma$$

- going beyond ²⁰Ne in this way is rare in normal stars!
- He burning re-stabilizes the core (no more contraction!)
- He fuel lasts on \approx 20% of the original H burning time!

Helium flash !!

- He burning starts differently for stars with different masses:
- ▶ $M > 2...3 M_{\odot}$: gradual start
- Iower masses:
- pressures in the core so large that the material is *electron* degenerate
- ▶ in this case, *P* does *not* depend on *T*!
- when He burning starts, it releases energy
- \blacktriangleright \rightarrow T increases

Helium flash !!

- but P does not increase!
- rising T increases energy production of the He burning!
- \blacktriangleright \rightarrow BOOM
- ► → He burning starts explosive → helium flash
- L reaches briefly that of a whole galaxy!
- eventually, T is so large that the electron degeneracy is removed
 - \rightarrow core can expand and cool
- settles down to He core burning

Helium flash

Helium flash

- He flash is not visible, too short!
- ► core He burning actually reduces L of the star: core expansion cools H shell source → less output
- envelope shrinks
- \blacktriangleright \rightarrow star reduces *L*, *R* and increases outer temperature

cluster evolution

cluster evolution

cluster evolution

HRD of open clusters

HRD of globular (old) cluster

Pulsating stars

- sometimes stars can show pulsating atmospheres
- this periodically changes radius, temperature and L
- \blacktriangleright \rightarrow pulsating variables
- related to a instability strip in the HRD
- convection limits the cooler edge of the instability strip
- changes in ionization limit the hotter edge of the instability strip
- different types:

Pulsating stars !!

- Mira variables: cool giants, periods of months to years, L changes by a factor of 100 or more
- Cepheid variables: bright, very regular pulsating variables
 - driven by changes in the opacity of the envelope
 - show a period-luminosity relation: dimmer Cepheids pulsate faster
 - Type I Cepheids: metal poor stars
 - Type II Cepheids: metal rich stars
 - different P L relationships

Pulsating stars

- RR Lyra variables: lower mass stars, $100 L_{\odot}$
- ▶ periods < 1 d
- metal poor stars found in globular clusters
- show a P L relationship (different from Cepheids)

Pulsating stars

