Computational Astrophysics
parallel programming

Peter Hauschildt
yeti@hs.uni-hamburg.de

Hamburger Sternwarte
Gojenbergsweg 112
21029 Hamburg

24. Oktober 2018

/53

Topics

v

vectorization

parallelization models

shared memory model (openMP)
distributed memory model (MPI)
practical example: PHOENIX

v

v

v

v

53

acknowledgment

» 'The original MPI training materials were developed
under the Joint Information Systems Committee
(JISC) New Technologies Initiative by the Training
and Education Centre at Edinburgh Parallel
Computing Centre (EPCC-TEC), University of
Edinburgh, United Kingdom.

» in addition, material from the Konrad-Zuse-Zentrum
(Berlin) was used (W. Baumann, H. Stlben)

introduction

v

in many cases, performance is not critical

however, if CPU/wallclock times are long,
performance can be critical

first step: standard optimization practices
many of those are done by the compiler
if it is instructed to do so!

— RTFM

v

v

v

v

v

53

introduction

» good coding practices help

» sometimes this is not enough

» some problems are just too large

» — use more advanced techniques

» classical approach:

» vector processing

» introduced by Seymore Cray, early 80’s.

vectorization

Skalare Verarbeitung = serielle Vearbeitung:

[[| [|

Vektorverarbeitung = FlieBbandverarbeitung:

Zeit

6/53

vectorization

» also useful in modern CPUs via prefetch:
» standard, no prefetch

7/53

vectorization

» with prefetch

8/53

vectorization examples

» vectorizable loops:

doi=1, N
a(i) = a(i) + 1
enddo

doi=1, N
a(i) = a(i + 1) + 1
enddo

9/53

vectorization examples

» data dependency preventing vectorization:

doi=1,N
a(i) = a(i - 1) + 1 —aw]|
enddo -

10/53

vectorization examples

» data dependency, safe vector length

doi=4,N
a(i) = a(i - 4) +1
enddo

11/53

vectorization

» compilers can vectorize loops

» for this to work, they have to be written 'correctly’ by
the user

» often compiler directives are used to aid the compiler
to avoid data dependencies etc.

» but there are always loops that cannot be vectorized
» speed-ups can be factors 2-25

12/53

vectorization

v

N o o s =

typical loop types:

full vector
gather
scatter
atomic update

reduction

Jacobi“

GauB-Seidel “

a(i) = b(i)

a(i) = b(j(1))

a(j()) = b(i)

a(j(1)) = a(j(i)) + b(i)
s =s + a(i)

a(i)
a(i)

(b(i - 1) +b@E +1)) /2.0
(a(d - 1) +a(i + 1)) / 2.0

13/53

vectorization

1, 2, 5, 6 are vectorizable

3, 4 are vectorizable with directives

7 is vectorizable with checkerboard methods
vectorization is good, but sometimes not successful

v

v

v

v

14/53

parallelization

v

vector processors hit performance limits quickly
pipelines need to be filled (latencies)
produce at best one result per cycle

— processor cycle and memory speed limit
performance

for further improvements, parallelization is used

v

v

v

v

15/53

parallelization

v

there are two main parallelization concepts:
1. single program, multiple data — SIMD
2. multiple program, multiple data — MIMD

each of these is used in practical applications
the SIMD model is considered easier to use
(I don’t think so)

v

v

v

16/53

parallelization

v

SIMD parallel programs are used on shared memory
parallel machines

here, several CPUs share a common memory
subsystem

shared memory processing or symmetric
multiprocessing (SMP) machines

require complex hardware to keep cache coherency
etc

— expensive machines (especially if > 2 CPUs)

17/53

parallelization

v

how to program SIMD code on a SMP?
typically done on the ’loop-level’

one solution:

HPF — high performance fortran

a set of compiler directives to allow parallel execution
of loops

not very flexible, but portable

v

v

v

v

v

18/53

openMP

v

more general approach: openMP
set of directives for fortran and C

allow more complicated parallelization (not only loop
level)

assumes a SMP machine!
basic concept:

v

v

v

v

19/53

openMP

sequentiell

parallel

sequentiell

parallel

sequentiell

TN

master thread

team of threads

aufteilen (fork)

zusammenfiihren (join)

20/53

openMP

» examples:

» simple parallel loop:
!$omp parallel do

doi=1, N
a(i) = b(1)
enddo

» atomic update:
!$omp parallel do
doi=1,N

!$omp atomic

a(j(1)) = a(GE)) + b))
enddo

21/53

openMP

» reduction:
s = 0.0
!$omp parallel do reduction(+: s)
doi=1,N
s =s + a(i)
enddo
» Jacobi:
'$omp parallel do
doi=1, N
a(i) = (b(1 - 1) + b(A + 1)) / 2.0
enddo

22/53

openMP

» parallel routines:
'$omp parallel
call b static extent
call c
!$omp end parallel

» thread private variables:
!$omp parallel do private(y)

doi=1, N ! i ist private
y = £(x(1)) !y ist private
a(i) =a(i) +c+y ! ¢ ist shared
b(i) = b(i) + d + y**x2 ! d ist shared
enddo

23/53

openMP

v

there are many more directives

the standard is described at:
http://www.openmp.org/

openMP works well for some programs

v

v

v

24/53

openMP

» but typical problems are

poor scalability (depending on loop length)
implicit barriers causing slowdown

stupid and buggy compiler support

not much user control over parallelization and
communication

» — openMP is good for some programs but not useful
for many codes

v vV Vv VY

25/53

MPI

SMP hardware is expensive

cheaper to use many simple machines for parallel
codes

how to write parallel codes on such machines?
how to write more general (MIMD) programs?
how to use aggregate memory of many machines?

presently, this type of parallelization cannot be done
automatically

or through directives

26/53

MPI

solution: use explicit communication between
different machines

this works also on SMP machines!

the communication is handled through (public
domain) libraries

most frequently used (today):
message passing interface MPI
basic programming concept:

27/53

MPI

Memory

Processor —| P P s 000 P

Communications Network

28/53

MPI

each processor in a MPI program runs a different
copy of the code

written in a conventional sequential language.
all variables are private.
communicate via special subroutine calls.

messages are packets of data moving between MPI
tasks

29/53

MPI

» message passing system has to be told the following
information:
» sending processor
» source location
» data type
» data length
» receiving processor(s)
» destination location
» destination size

30/53

MPI

» important: receiving process is capable of dealing
with messages it is sent
» Point-to-Point Communication:

» one process sends a message to another
» simplest form of message passing
» different types of point-to-point communication

31/53

MPI

Synchronous Sends:

provide information about the completion of the
message

Asynchronous Sends
only know when the message has left
Blocking Operations:

only return from the subroutine call when the
operation has completed

32/53

MPI

» Non-Blocking Operations

» return straight away and allow the MPI task to
continue to perform other work

» At some later time the MPI task can test or wait for
the completion of the non-blocking operation

33/53

MPI

» Collective communications:

» higher level routines involving several MPI processes
at atime

» Barriers:

» synchronize processes

» Broadcast:

» one-to-many communication

34/53

MPI

Reduction Operations:

combine data from several processes to produce a
single result

MPI provides facilities (‘communicators’ to address
groups of MPI tasks

each MPI process has a rank’ to identify it
MPI also works across heterogeneous clusters!
MPI Pt-2-Pt operations:

35/53

MPI

OPERATION MPI CALL
Standard send MPI SEND
Synchronous send | MPTI SSEND
Buffered send MPI BSEND
Ready send MPI RSEND
Receive MPI RECV

36/53

MPI

NON-BLOCKING OPERATION

MPI CALL

Standard send MPI ISEND
Synchronous send MPI ISSEND
Buffered send MPI IBSEND
Ready send MPI IRSEND
Receive MPI IRECV

37/53

MPI

MPI codes require user design
steep learning curve...
this sounds harder than it is

it is actually easier than getting SMP programs to
work efficiently

it is important to realize that the machines only
communicate if told to!

there are many more sources of error in parallel
programs

like the dreaded deadlock ...

38/53

Example: PHOENIX code

» general-purpose stellar atmosphere code

» implements detailed micro-physics

» in development for ~ 15years

» portable

» about 1.8M lines of Fortran, C, C++ code

» applied successfully to a large variety of problems

39/53

PHOENIX code

v

parallelization to allow larger and more detailed
simulations in reasonable timeframe.

independent physical & logical program modules
— allows task parallelism
— plus data parallelism within each module

problem: very different types of simulations
— require different algorithms

v

v

v

40/53

(serial) CPU time

» small for each individual point on the wavelength grid:
~ 10...100 msec

» number of wavelength points for radiative transfer:
30,000-300,000 (can be > 10°)

» — up to 30,000 sec to “sweep” once through all
wavelength points

» typically, ~ 10 iterations (sweeps) are required to
obtain an equilibrium model

» —»~ 3.5 CPU days
» there are, literally, 10000’s of models in a typical grid

41/53

Solution through parallelization

» large number of simulations

» complex code (verification on several different
architectures)

» need to be able to run efficiently on different parallel
supercomputers

» — Fortran & MPI
» available on all major platforms
» public domain implementations: MPICH, LAM

42/53

Solution through parallelization

» memory issues

» MPI available on distributed memory systems
» large aggregate memory of distributed memory
machines

» allows reduction of memory requirements per PE
» — larger model calculations possible!

43/53

Solution through parallelization

» scalability issues

» allows more efficient usage of multiple CPUs

» reduces wall-clock time for typical simulations

» depends very often on type of models:
some simulations (stars) allow algorithms that scale
very well, but some simulations (novae, SNe) do not

» — implement several algorithms that can be selected
at run-time to obtain “best” overall performance while
making simulations feasible!

44/53

Parallelizing the wavelength loop

» “longest” loop in the whole code: number of
wavelength points!

» — ideal for parallelization

» works extremely well for static configurations:
each wavelength point can be done in parallel with no
communication until each PE has completed its
sweep.

» does not reduce memory requirements per PE
— combine with other task/data parallel algorithms
— concept of “wavelength clusters” with a set of
“worker PEs” each

45/53

Design

Wavelength Node 0 Wavelength Node 1 Wavelength Node 2

Worker 0 ‘Worker 0 Worker 0

Worker1 | Worker1 | Worker1 |
Worker 2 ‘Worker 2 Worker 2

Worker 3 Worker 3 Worker 3

46/53

Parallelizing the wavelength loop

» expanding atmospheres: radiative transfer is initial
value problem in wavelength

» wavelength point / depends on previous point / — 1

» — use a “pipeline” approach to parallelization
— cluster working on point / — 1 sends data to cluster
working on /

47/53

Parallelizing the wavelength loop

» problem separates into pre— and post—processing
phases:

for i := 1 to NUMWAVELENGTHS
pre_processing: {

atomicLineOpacity(...)
molecularLineOpacity(...)
nlteOpacity(...)

}

radiativeTransfer(...)

post_processing: {

nlteUpdateRates(...)
+

end

48/53

Parallelizing the wavelength loop

» properties similar to vector pipeline
» limited scalability

» combination of clusters and workers can be used to
increase performance on any given architecture

» performance depends on type of model:
» static — nearly perfect scaling
» moving — RT causes stalls

49/53

static model

Vega test model
40 T T T T
¥—kIBM SP2, 1 node per cluster
+——+IBM SP2, 2 nodes per cluster
©o——=IBM SP2, 5 nodes per cluster
A——ASGI Origin 2000, 1 node per cluster

30

20

relative speedup for spectrum calculation
L
e b bicce i bt e

0 L L L L L L
0 10 20 30 40 50 60
number of CPUs

50/53

nova model

Nova test model
12 T T T
[| ¥——%IBM SP2,

T
1 node per cluster

! 2 nodes per cluster

[| &——=IBM SP2, 4 nodes per cluster

5 nodes per cluster =

8 nodes per cluster B

relative speedup for spectrum calculation
)
T
|

0 L L L L L L
0 5 10 15 20 25 30
number of CPUs

51/53

supernova model

Supernova test model
T T T T
¥—kIBM SP2, 1 node per cluster
+——+IBM SP2, 2 nodes per cluster
©o—=IBM SP2, 4 nodes per cluster

relative speedup for spectrum calculation

I I I I I I
15 20 25 30
number of CPUs

o
o
[S)

52/53

Conclusions

» parallelization of PHOENIX allows physically more
detailed models

» decrease in wall-clock time per model is substantial
for many types of simulations

» coding effort to implement MPI calls relatively small
(about 33000 lines or 2%)

» logic for algorithm selection and load balancing fairly
complex

» parallel version of PHOENIX is regularly used in
production

» depending on simulation type we use between 4 and
2.5M PEs (single core)

53/53

