
Computational Astrophysics
parallel programming

Peter Hauschildt
yeti@hs.uni-hamburg.de

Hamburger Sternwarte
Gojenbergsweg 112

21029 Hamburg

24. Oktober 2018

1 / 53



Topics

I vectorization
I parallelization models
I shared memory model (openMP)
I distributed memory model (MPI)
I practical example: PHOENIX

2 / 53



acknowledgment

I ’The original MPI training materials were developed
under the Joint Information Systems Committee
(JISC) New Technologies Initiative by the Training
and Education Centre at Edinburgh Parallel
Computing Centre (EPCC-TEC), University of
Edinburgh, United Kingdom.’

I in addition, material from the Konrad-Zuse-Zentrum
(Berlin) was used (W. Baumann, H. Stüben)

3 / 53



introduction

I in many cases, performance is not critical
I however, if CPU/wallclock times are long,

performance can be critical
I first step: standard optimization practices
I many of those are done by the compiler
I if it is instructed to do so!
I → RTFM

4 / 53



introduction

I good coding practices help
I sometimes this is not enough
I some problems are just too large
I → use more advanced techniques
I classical approach:
I vector processing
I introduced by Seymore Cray, early 80’s.

5 / 53



vectorization

6 / 53



vectorization

I also useful in modern CPUs via prefetch:
I standard, no prefetch

7 / 53



vectorization

I with prefetch

8 / 53



vectorization examples

I vectorizable loops:

9 / 53



vectorization examples

I data dependency preventing vectorization:

10 / 53



vectorization examples

I data dependency, safe vector length

11 / 53



vectorization

I compilers can vectorize loops
I for this to work, they have to be written ’correctly’ by

the user
I often compiler directives are used to aid the compiler

to avoid data dependencies etc.
I but there are always loops that cannot be vectorized
I speed-ups can be factors 2-25

12 / 53



vectorization

I typical loop types:

13 / 53



vectorization

I 1, 2, 5, 6 are vectorizable
I 3, 4 are vectorizable with directives
I 7 is vectorizable with checkerboard methods
I vectorization is good, but sometimes not successful

14 / 53



parallelization

I vector processors hit performance limits quickly
I pipelines need to be filled (latencies)
I produce at best one result per cycle
I → processor cycle and memory speed limit

performance
I for further improvements, parallelization is used

15 / 53



parallelization

I there are two main parallelization concepts:
1. single program, multiple data→ SIMD
2. multiple program, multiple data→ MIMD

I each of these is used in practical applications
I the SIMD model is considered easier to use
I (I don’t think so)

16 / 53



parallelization

I SIMD parallel programs are used on shared memory
parallel machines

I here, several CPUs share a common memory
subsystem

I shared memory processing or symmetric
multiprocessing (SMP) machines

I require complex hardware to keep cache coherency
etc

I → expensive machines (especially if > 2 CPUs)

17 / 53



parallelization

I how to program SIMD code on a SMP?
I typically done on the ’loop-level’
I one solution:
I HPF→ high performance fortran
I a set of compiler directives to allow parallel execution

of loops
I not very flexible, but portable

18 / 53



openMP

I more general approach: openMP
I set of directives for fortran and C
I allow more complicated parallelization (not only loop

level)
I assumes a SMP machine!
I basic concept:

19 / 53



openMP

20 / 53



openMP

I examples:
I simple parallel loop:

I atomic update:

21 / 53



openMP

I reduction:

I Jacobi:

22 / 53



openMP

I parallel routines:

I thread private variables:

23 / 53



openMP

I there are many more directives
I the standard is described at:
I http://www.openmp.org/

I openMP works well for some programs

24 / 53



openMP

I but typical problems are
I poor scalability (depending on loop length)
I implicit barriers causing slowdown
I stupid and buggy compiler support
I not much user control over parallelization and

communication
I → openMP is good for some programs but not useful

for many codes

25 / 53



MPI

I SMP hardware is expensive
I cheaper to use many simple machines for parallel

codes
I how to write parallel codes on such machines?
I how to write more general (MIMD) programs?
I how to use aggregate memory of many machines?
I presently, this type of parallelization cannot be done

automatically
I or through directives

26 / 53



MPI

I solution: use explicit communication between
different machines

I this works also on SMP machines!
I the communication is handled through (public

domain) libraries
I most frequently used (today):
I message passing interface MPI
I basic programming concept:

27 / 53



MPI

28 / 53



MPI

I each processor in a MPI program runs a different
copy of the code

I written in a conventional sequential language.
I all variables are private.
I communicate via special subroutine calls.
I messages are packets of data moving between MPI

tasks

29 / 53



MPI

I message passing system has to be told the following
information:

I sending processor
I source location
I data type
I data length
I receiving processor(s)
I destination location
I destination size

30 / 53



MPI

I important: receiving process is capable of dealing
with messages it is sent

I Point-to-Point Communication:
I one process sends a message to another
I simplest form of message passing
I different types of point-to-point communication

31 / 53



MPI

I Synchronous Sends:
I provide information about the completion of the

message
I Asynchronous Sends
I only know when the message has left
I Blocking Operations:
I only return from the subroutine call when the

operation has completed

32 / 53



MPI

I Non-Blocking Operations
I return straight away and allow the MPI task to

continue to perform other work
I At some later time the MPI task can test or wait for

the completion of the non-blocking operation

33 / 53



MPI

I Collective communications:
I higher level routines involving several MPI processes

at a time
I Barriers:
I synchronize processes
I Broadcast:
I one-to-many communication

34 / 53



MPI

I Reduction Operations:
I combine data from several processes to produce a

single result
I MPI provides facilities (’communicators’ to address

groups of MPI tasks
I each MPI process has a ’rank’ to identify it
I MPI also works across heterogeneous clusters!
I MPI Pt-2-Pt operations:

35 / 53



MPI

36 / 53



MPI

37 / 53



MPI

I MPI codes require user design
I steep learning curve...
I this sounds harder than it is
I it is actually easier than getting SMP programs to

work efficiently
I it is important to realize that the machines only

communicate if told to!
I there are many more sources of error in parallel

programs
I like the dreaded deadlock . . .

38 / 53



Example: PHOENIX code

I general-purpose stellar atmosphere code
I implements detailed micro-physics
I in development for ≈ 15 years
I portable
I about 1.8M lines of Fortran, C, C++ code
I applied successfully to a large variety of problems

39 / 53



PHOENIX code

I parallelization to allow larger and more detailed
simulations in reasonable timeframe.

I independent physical & logical program modules
→ allows task parallelism
→ plus data parallelism within each module

I problem: very different types of simulations
I → require different algorithms

40 / 53



(serial) CPU time

I small for each individual point on the wavelength grid:
≈ 10 . . . 100 msec

I number of wavelength points for radiative transfer:
30,000-300,000 (can be > 106)

I → up to 30,000 sec to “sweep” once through all
wavelength points

I typically, ≈ 10 iterations (sweeps) are required to
obtain an equilibrium model

I →≈ 3.5 CPU days
I there are, literally, 10000’s of models in a typical grid

. . .

41 / 53



Solution through parallelization

I large number of simulations
I complex code (verification on several different

architectures)
I need to be able to run efficiently on different parallel

supercomputers
I → Fortran & MPI

I available on all major platforms
I public domain implementations: MPICH, LAM

42 / 53



Solution through parallelization

I memory issues
I MPI available on distributed memory systems
I large aggregate memory of distributed memory

machines
I allows reduction of memory requirements per PE
I → larger model calculations possible!

43 / 53



Solution through parallelization

I scalability issues
I allows more efficient usage of multiple CPUs
I reduces wall-clock time for typical simulations
I depends very often on type of models:

some simulations (stars) allow algorithms that scale
very well, but some simulations (novae, SNe) do not

I → implement several algorithms that can be selected
at run-time to obtain “best” overall performance while
making simulations feasible!

44 / 53



Parallelizing the wavelength loop

I “longest” loop in the whole code: number of
wavelength points!

I → ideal for parallelization
I works extremely well for static configurations:

each wavelength point can be done in parallel with no
communication until each PE has completed its
sweep.

I does not reduce memory requirements per PE
→ combine with other task/data parallel algorithms
→ concept of “wavelength clusters” with a set of
“worker PEs” each

45 / 53



Design

Worker 0

Wavelength Node 0

Worker 2
Worker 1

Worker 3

Worker 0

Wavelength Node 1

Worker 2
Worker 3

Worker 1
Worker 0

Wavelength Node 2

Worker 1
Worker 2
Worker 3

46 / 53



Parallelizing the wavelength loop

I expanding atmospheres: radiative transfer is initial
value problem in wavelength

I wavelength point l depends on previous point l − 1
I → use a “pipeline” approach to parallelization
→ cluster working on point l − 1 sends data to cluster
working on l

47 / 53



Parallelizing the wavelength loop
I problem separates into pre– and post–processing

phases:
for i := 1 to NUMWAVELENGTHS

pre_processing: {

...

atomicLineOpacity(...)

molecularLineOpacity(...)

nlteOpacity(...)

}

radiativeTransfer(...)

post_processing: {

...

nlteUpdateRates(...)

}

end

48 / 53



Parallelizing the wavelength loop

I properties similar to vector pipeline
I limited scalability
I combination of clusters and workers can be used to

increase performance on any given architecture
I performance depends on type of model:
I static→ nearly perfect scaling
I moving→ RT causes stalls

49 / 53



static model

50 / 53



nova model

51 / 53



supernova model

52 / 53



Conclusions

I parallelization of PHOENIX allows physically more
detailed models

I decrease in wall-clock time per model is substantial
for many types of simulations

I coding effort to implement MPI calls relatively small
(about 33000 lines or 2%)

I logic for algorithm selection and load balancing fairly
complex

I parallel version of PHOENIX is regularly used in
production

I depending on simulation type we use between 4 and
2.5M PEs (single core)

53 / 53


