Stellar/Planetary Atmospheres Part 15: extrasolar planets

Peter Hauschildt yeti@hs.uni-hamburg.de

Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg

14. März 2018

Topics

Extrasolar giant planets

Model assumptions

- Standard classical "stellar atmosphere" problem (at least, that is the usual assumption):
 - 1. plane parallel
 - 2. hydrostatic
 - 3. LTE
 - 4. radiative plus convective energy equilibrium

The Problems

- convection into optically thin layers (no real theory).
- complex equation of state (molecules, dust).
- highly non-grey opacities.
- poorly known opacities (molecules, dust).
- 100's of millions of lines need to be handled (TiO, water vapor).
- strongly depth dependent line broadening (van der Waals) but mostly unknown interaction constants.

The Problems

- non-ideal EOS effects occur near the bottom of BD atmospheres.
- illumination.
- radiative transfer.
- ▶ non-LTE.

Basic Physical Model

- spherical shell
- static (stars) or expanding (novae, winds, SNe)
- hydrostatic or hydrodynamical equilibrium
- central source provides energy

Constraint equations:

- energy conservation
 - \rightarrow temperature structure
- momentum conservation
 - \rightarrow pressure & velocity structure

- "Auxiliary" equations:
 - equation of state \rightarrow (T, P_{gas}, ρ) relation
 - high temperatures:

(hot stars, Supernovae, novae)

- \rightarrow need to include many ions
- Iow temperatures:

(Brown dwarfs, Jupiter-like planets, cool novae)

 \rightarrow need to include 100's of molecules & dust species

- ▶ atomic line blanketing: $\approx 5 30 \times 10^6$ lines dynamically selected from a list of 42×10^6 lines
- ► molecular line blanketing: $\approx 15 300 \times 10^{6}$ lines dynamically selected from a list of 700×10^{6} lines
- direct opacity sampling of line blanketing
- ▶ depth dependent Voigt or Gauss profiles
 → no ODF or opacity sampling tables (NLTE!).
- special profiles for important lines (work in progress)

- results depend strongly on
 - distance from parent star
 - type of the parent star
 - amount of dust present in the atmosphere
- transit models require transmission spectrum modeling

- usual boundary conditions for an isolated star:
- inward directed flux at the surface = zero

▶ I
$$_{\nu}^{\downarrow}(au_{\mathrm{std}}=0,\mu)=$$
 0, where $-1\leq\mu=\cos(heta)\leq$ 0

 \blacktriangleright planet close to star \rightarrow

▶ boundary condition on I_{ν}^{\downarrow} is determined by the incident flux (F_{ν}^{inc}) given by

$$2\pi\int\limits_{-1}^{0}\mathrm{I}_{
u}^{\downarrow}(\mu)\mu d\mu=\mathrm{F}_{
u}^{\mathrm{inc}}(au_{\mathrm{std}}=0)$$

where

$$\mathrm{F}_{
u}^{\mathrm{inc}}(au_{\mathrm{std}}=0)=\left(rac{ extsf{R}^{\star}}{ extsf{a}}
ight)^{2}\mathrm{F}_{
u}^{\star}$$

- $\mathrm{I}^{\downarrow}_{
 u}(\mu)$ are the inward directed intensities along direction μ
- R* is the radius of the primary
- ► *a* is the surface to surface primary-secondary separation
- F_{ν}^{\star} is the monochromatic flux from the primary.
- all of the incident radiation from the primary is re-radiated outward by the secondary in the form of reflected flux (F^{ref}) and as a contribution to the thermal flux (F^{therm})

- \blacktriangleright \rightarrow integrated flux at the surface is equal to $\sigma T_{\rm int}^4 + F^{\rm inc}$
- T_{int} refers to the effective temperature of the planet in the *absence* of irradiation
- ► $4\pi R_p^2 \sigma T_{int}^4$ equals the planet's intrinsic luminosity where R_p is the planet's radius
- intrinsic luminosity is an age dependent quantity which represents the energy released by the planet as it cools and contracts
- T_{int} also relates irradiated planets to isolated planets in which case T_{int} is identical to the more commonly used T_{eff}

- \blacktriangleright for irradiated planets (and stars) $T_{\rm eff}$ loses some of its connection to the fundamental properties of the planet
- ➤ → difficult to separate, by observation, those photons which are thermally radiated by the planet from those which originated from the primary and are merely reflected by the planet
- describe the equilibrium temperature of the planet's day side

$$\sigma T_{\rm eq}^4 = \sigma T_{\rm int}^4 + (1 - A_B) F^{\rm inc},$$

where A_B is the Bond albedo

- \blacktriangleright $T_{\rm eq}$ represents the equilibrium state at a given age and allows for the possibility that the intrinsic luminosity has not reached zero
- T_{int} will only be important for young (or more massive) planets when the primary is a solar type star
- \blacktriangleright for planets orbiting M dwarfs, $T_{\rm int}$ can be a significant contribution to $T_{\rm eq}$

17/33

- memory & I/O requirements
 - line lists (far) too large for memory
 - \rightarrow scratch files & block algorithm
 - \rightarrow trade memory for I/O bandwidth

- memory & I/O requirements
 - number of individual energy levels: \approx 10,000 \rightarrow \approx 10 MB
 - number of individual NLTE transitions: $\approx 100,000 \rightarrow \approx 150 \text{ MB}$
 - auxiliary storage pprox 100 MB
 - ightarrow total memory requirement \geq 250 MB
 - ▶ number of individual energy levels and transitions will increase dramatically \rightarrow memory requirements > 0.5 GB

- ▶ (serial) CPU time
 - \blacktriangleright small for each individual point on the wavelength grid: $\approx 10 \dots 100 \mbox{ msec}$
 - ▶ number of wavelength points for radiative transfer: 30,000-500,000 (can be $> 10^6$)
 - $\blacktriangleright \rightarrow \approx$ 50,000 sec to "sweep" once through all wavelength points

- ▶ (serial) CPU time
 - \blacktriangleright typically, \approx 10 iterations (sweeps) are required to obtain an equilibrium model
 - ▶ \rightarrow ≈ 6 CPU days
 - ▶ there are, literally, 1000's of models in a typical grid ...

- Solution: parallel computing
 - dramatically reduces wallclock time per model
 - makes full scale model calculations "easy"
 - allows efficient use of existing large supercomputer facilities
 - scaling nearly linear, limited by I/O performance

Results: Trends

- Trends (Allard et al, 2001)
 - *T*_{eff} = 2500, 1800, 1000 K
 - ▶ age 5Gy (Chabrier et al, 2000)

Results: Jupiter

Importance of line profiles

Importance of line profiles

- Close-in exoplanets:
- Impinging radiation raises day-side temperatures to the L-dwarf regime.
- Reflected stellar light dominates the visible spectrum.

Clouds and Temperature Structure

- Clouds effectively reflect impinging radiation.
- Dust also contributes to heating of outer cloud layers.
- Cooler interior than in brown dwarfs of equal luminosity.

Clouds and Temperature Structure

- isolated (long dash)
- 0.046AU (short dash)
- 0.023AU (solid)

from Chabrier et al, ApJL, 2004

from Chabrier et al, ApJL, 2004

from Chabrier et al, ApJL, 2004