Stellar/Planetary Atmospheres Part 10: EOS

Peter Hauschildt yeti@hs.uni-hamburg.de

Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg

14. März 2018

LTE equation of state

TE = thermodynamic equilibrium

- ▶ state completely described by 2 thermodyn. quantities (T, P_{gas})
- detailed balance for all processes
- local thermodynamic equilibrium (LTE)
 - ▶ assume TE holds locally even though there are gradients

LTE equation of state

- LTE assumes that non-local effects (radiation!) are unimportant
- material is driven toward LTE, e.g., by collisional processes
- non-local process tend to destroy LTE
- in many cases, radiation can easily invalidate LTE

LTE is OK if ...

- collisions dominate radiation
- radiation field is Planckian
- no scattering of radiation

LTE is nonsense if

- radiation dominates collisions
 - chromospheres, coronae
 - optically thin regions of all stars
- scattering is important
 - hot stars (electron scattering, line scattering)
 - novae/SNe
 - lines of some elements (Lyman series of H)

Maxwell velocity distribution

holds in TE

 in stars, it basically always holds to very good approximation

$$f(\vec{v}) d\vec{v} = \left(\frac{m}{2\pi kT}\right)^{3/2} \exp\left(-\frac{1/2mv^2}{kT}\right) d\vec{v}$$

or for $v = |\vec{v}|$

$$f(v) dv = \left(\frac{m}{2\pi kT}\right)^{3/2} \exp\left(-\frac{1/2mv^2}{kT}\right) 4\pi v^2 dv$$

Maxwell velocity distribution

Fig. 1.7. The curve shows a Maxwell–Boltzmann speed distribution according to eq. (1.10) for iron atoms at a temperature of 6000 K.

11

Maxwell velocity distribution

- most probable velocity: $v_1 = \sqrt{2kT/m}$
- average velocity: $v_2 = \sqrt{8kT/\pi m}$
- rms velocity: $v_3 = \sqrt{3kT/m}$

Boltzmann excitation formula

- describes the relative populations between 2 energy levels
- holds only in TE (or LTE)

$$\frac{n_i}{n_1} = \frac{g_i}{g_1} \exp\left(-\frac{\chi_i}{kT}\right)$$

- ▶ n_i: population density (particles /cm³)
- g_i: statistical weights (number of degenerate quantum states)
- χ_i : excitation energy ($\chi_1 \equiv 0$)

Boltzmann excitation formula

set

$$N = \sum n_i$$

so that

$$N = \frac{n_1}{g_1} \sum g_i \exp\left(-\frac{\chi_i}{kT}\right) \equiv \frac{n_1}{g_1} Q(T)$$

► Q: partition function (*Zustandssumme*, sometimes *Z*)

Boltzmann excitation formula

▶ with Q we have

$$\frac{n_i}{N} = \frac{g_i}{Q} \exp\left(-\frac{\chi_i}{kT}\right)$$

▶ → with given Q and N we can calculate the population of any/all level

Properties of Q

$$Q = \sum g_i \exp\left(-\frac{\chi_i}{kT}\right)$$

▶ it is divergent!

$$\lim_{n\to\infty}\sum_{i=0}^n g_i \exp\left(-\frac{\chi_i}{kT}\right) = \infty$$

because $g_i \geq 1$ and $\chi_i \leq \chi_{ion}$

Properties of Q

- this is only a problem for a single atom with infinite space!
- ▶ in reality:
 - \blacktriangleright last bound state Bohr radius \leq average distance between atoms

$$r_n = n^2 a_0 \le r_v = (3/4\pi N)^{1/3}$$

so that

$$n^2 \le \left(3/4\pi N
ight)^{1/3}/a_0$$

- ▶ a₀: Bohr radius of ground state (e.g., H I)
- ► N: particle density (1/cm³)

•
$$N = 10^{15} \rightarrow n_{\rm H~I} \approx 30$$

- how to describe ionization/recombination?
- in general: rate equations!
- in LTE: Saha equation
- describes distribution of nuclei over all ionization stages
- considers chemical equilibrium

$$n_k \rightleftharpoons n_{k+1} n_{\rm e}$$

 it is basically an extension of the Boltzmann formula to "continuum" states

$$n_{k} = n_{k+1} n_{e} \frac{Q_{k}}{Q_{k+1} Q_{e}} \left(\frac{h^{2}}{2\pi m_{e} kT}\right)^{3/2} \exp\left(\frac{\chi_{k \to k+1}}{kT}\right)$$

- n_k: number density of ionization stage k (summed over all energy levels)
- ▶ *n*_e: electron density
- Q_k: partition function of state k
- $Q_{\rm e}=2$
- $\chi_{k \to k+1}$: ionization energy (ground state to ground state)

- combination with Boltzmann formula is easily possible
- For given (T, n_e):
 Saha-Boltzmann formula → explanation of Harvard sequence
- compute

$$f_{ij} \equiv rac{n_{ij}}{n_i}$$

n_{ij}: number density of element *i* in ionization stage *j*

•
$$n_i = \sum_j n_{ij}$$

$$f_{ij} = \frac{n_{ij}/n_{i0}}{n_i/n_{i0}} = \frac{(n_{i1}/n_{i0})(n_{i2}/n_{i1})\cdots(n_{ij}/n_{ij-1})}{1+(n_{i1}/n_{i0})+(n_{i1}/n_{i0})(n_{i2}/n_{i1})+\cdots}$$

•
$$f_{ij} = f_{ij}(T, n_{\rm e}, P_{\rm gas})$$

Harvard sequence

Abb. 48. [Nach C. H. PAYNE [407] und Harvard Circ. 256, (1924).] Oberer Teil der Abbildung: Beobachtete Linienintensitäten. Unterer Teil der Abbildung: Nach FowrER und MIXNE für $P_{\phi} = 132$ bar berechnete Konzentrationen (in logarithmischem Maßstab). Die Skala der Spektraltypen ist der Temperaturskala (Abzzissen = $T \cdot 10^{-1}$) so angepaßt, daß die beobachteten und berechneten Maxima zusammenfallen: Vorläufige Ionisations-Temperaturskala.

- need equations to close the system
- \blacktriangleright \rightarrow particle conservation

$$n_i = \epsilon_i \left(P_{\rm gas} / kT - n_{\rm e}
ight)$$

- ϵ_i : normalized abundance (by number) of this element
- charge conservation:

$$n_{\rm e} = \sum_i \sum_j q_{ij} n_{ij}$$

- ▶ problem: need to know $n_{\rm e}$ for $(T, P_{\rm gas})!$
- insert f_{ij} into charge conservation \rightarrow

$$n_{\mathrm{e}} = \sum_{i} n_{i} \sum_{j} q_{ij} f_{ij} = (P_{\mathrm{gas}}/kT - n_{\mathrm{e}}) \sum_{i} \epsilon_{i} \sum_{j} q_{ij} f_{ij}$$

so that

$$m{P_{ ext{gas}}}/kT = m{n_{ ext{e}}}\left[1 + rac{1}{\sum_i \epsilon_i \sum_j q_{ij}f_{ij}}
ight]$$

- one non-linear $(f_{ij}!)$ equation for n_e
- can be solved by any suitable root-finding method!

- high temperatures: only ions
- \blacktriangleright \rightarrow solve Saha equations for $\mathit{n}_{\rm e}$
- \blacktriangleright \rightarrow know all partial pressures!
- \blacktriangleright \rightarrow done.

- Iow temperatures: consider molecules!
- mass action law for molecule AB and atoms A and B

$$\frac{P_A P_B}{P_{AB}} = K_{AB}(T)$$

or

$$\frac{P_A P_B P_C \cdots P_n}{P_{ABC\dots n}} = (kT)^{n-2} K_{ABC\dots n}(T)$$

for molecules with > 2 nuclei

non-linear!

• dissociation constant K(T):

$$\mathcal{K}_{AB}(T) = \left(\frac{2\pi m kT}{h^2}\right)^{3/2} kT \frac{Q_A Q_B}{Q_{AB}} e^{-D_0^0/kT}$$

where $m = m_A m_B / m_{AB}$

► D₀⁰: dissociation energy

 \blacktriangleright molecules, atoms, ions, electrons contribute to $P_{
m gas}$

$$P_{\rm gas} = P_{\rm atom} + P_{\rm ions} + P_{\rm elec} + P_{
m molec}$$

- must solve set of chemical equilibria to compute each P_i
- in terms of number densities:

$$N_i = N_i^{\mathrm{at}} + \sum_j N_{ij}^{\mathrm{ion}} + \sum_k \alpha_{ik} N_k^{\mathrm{mol}}$$

- N_{ij}: number density of atom i in ionization state j
- α_{ik} : number of nuclei of element *i* in molecule *k*

particle conservation:

$$N_T = \sum_{i=1}^{n_{\text{at}}} N_i = \frac{1}{kT} \left[P_g - P_e + \sum_{k=1}^{n_{\text{mol}}} (\alpha_k - 1) P_k^{\text{mol}} \right]$$

conservation of nuclei:

$$\varepsilon_i = \frac{N_i}{\sum_{i=1}^{n_{\text{at}}} N_i} = \frac{N_i \cdot kT}{P_g - P_e + \sum_{k=1}^{n_{\text{mol}}} (\alpha_k - 1)P_k^{\text{mol}}}$$

• ε_i : fraction of atoms of element *i* relative to N_T

from this we obtain:

$$0 = \varepsilon_i \cdot \left[P_g - P_e + \sum_{k=1}^{n_{\text{mol}}} (\alpha_k - 1) P_k^{\text{mol}} \right]$$
$$-P_i^{\text{at}} - \sum_{j=1}^{n_{\text{ion}}} P_{ij}^{\text{ion}} - \sum_{k=1}^{n_{\text{mol}}} \alpha_{ik} P_k^{\text{mol}}$$

- set of linear equations?
- however, system is non-linear via Saha equation and mass-action law!

add charge conservation:

$${{ extsf{P}_{e}}} = \sum\limits_{i = 1}^{{n_{ extsf{at}}}} {\sum\limits_{j = 1}^{{n_{ extsf{ion}}}} {Z_j} \cdot P_{ij}^{ extsf{ion}}}}$$

where Z_j is here the electric charge associated with ionization state j

 \blacktriangleright \rightarrow close the system

- molecular EOS can be solved by 'any' method
- Problem: large number of molecules!

Molecules

Selected molecules considered in the EOS											
NH	C_2	CN	CO	MgH	CaH	SiH	TiO	H_2O	H_2		
N_2	NO	CO_2	O_2	ZrO	VO	MgS	SiO	AIH	HCI		
HF	HS	TiH	AIO	BO	CrO	LaO	MgO	ScO	YO		
SiF	NaCl	CaOH	HCN	C_2H_2	CH_4	CH_2	C_2H	HCO	NH_2		
LiOH	C_2O	AIOF	NaOH	MgOH	AIO_2	AI_2O	AIOH	SiH_2	SiO_2		
H_2S	OCS	KOH	TiO_2	TiOCI	VO_2	FeF_2	YO_2	ZrO_2	BaOH		
LaO_2	C_2H_4	C_3	SiC_2	CH_3	C_3H	NH ₃	C_2N_2	C_2N	CaF_2		
AIOCI	Si_2C	CS_2	$CaCl_2$	AIF	CaF	Si_2	SiS	CS	AICI		
KCI	CaCl	TiS	TiCl	SiN	AIS	AL_2	FeO	SiC	TiF_2		
FeH	LiCl	NS	NaH	SO	S_2	$AIBO_2$	AICIF	$AICI_2$	AIF_2		
$AIOF_2$	AIO_2H	AI_2O_2	$BeBO_2$	OBF	HBO	HBO_2	HBS	BH_2	BO_2H_2		
BH_3	H_3BO_3	KBO_2	$LiBO_2$	$NaBO_2$	BO_2	$BaCl_2$	BaF_2	BaO_2H_2	BaCIF		
$BeCl_2$	BeF_2	BeOH	BeH_2	BeH_2O_2	Be_2O	Be_3O_3	CICN	CHCI	CHF		
CHP	CH_3CI	KCN	NaCN	BeC_2	C_2HCI	C_2HF	$(NaCN)_2$	C_4	C ₅		
CaO_2H_2	MgCIF	SiH_3CI	$FeCl_2$	K_2Cl_2	$MgCl_2$	Na_2Cl_2	TiOCl ₂	$SrCl_2$	TiCl ₂		
$ZrCl_2$	TiCl ₃	$ZrCl_3$	$ZrCl_4$	CrO_2	SiH_3F	OTiF	SiH_2F_2	MgF_2	SrF_2		
ZrF_2	TiF_3	ZrF_4	${\sf FeO}_2{\sf H}_2$	SrOH	$(KOH)_2$	$(LiOH)_2$	MgO_2H_2	$(NaOH)_2$	$\mathrm{SrO}_{2}\mathrm{H}_{2}$		
PH_2	PH_3	SiH_4	Si_2N	PO_2	SO_2	P_4	Si ₃	NO_2	NO_3		
C_3N	C_2H_3	C_4H	HC_3N	C_4H_2	CH_3CN	HC_5N	C_6H	C_4H_4	C_6H_2		
HC_7N	C_4H_4S	C_4H_4O	C_4H_6	C_6H_4	HC_9N	C_5H_5N	C_6H_5O	C_6H_6	C_6H_6O		
$HC_{11}N$	OH-	CH-	C_{2}^{-}	OH	CH	CN ⁻	SiH ⁻	H_2^-	HS ⁻		
CS-	FeO-	BO-	$AICI_2^-$	AIF_2^-	$AIOF_2^-$	AIOH-	CO_2^-	NO^+	H_2^+		
TiO ⁺	ZrO^+	$AIOH^+$	$BaOH^+$	HCO^+	$CaOH^+$	$SrOH^+$	H_3O^+	H_3^+			

- ▶ very low temperatures (< 2000 K)
- \blacktriangleright \rightarrow need to consider condensation!!

Liquids & Solids

Selected liquid/dust species considered in the EOS										
Al/I	B/I	Ba/I	Be/I	Ca/l	Cr/I	Cu/I	Fe/I	K/I		
Li/I	Mg/I	Mn/I	Na/I	Nb/I	Ni/I	P/I	S/I	Si/I		
Sr/I	Ti/l	V/I	Zn/l	Zr/I	BeO/I	CIK/I	NbO/I	OSr/I		
CINa/I	VO/I	B_2Ti/I	$BaCl_2/I$	$CaCl_2/I$	CI_2Fe/I	Cl_2Sr/l	O_2Si/I	Li_2O/I		
Mg_2Si/I	Cu_2O/I	CI_3Fe/I	Cr_2O_3/I	NiS_2/I	$BLiO_2/I$	CI_2S_2/I	Ni_3S_2/I	AI_2O_3/I		
O_3V_2/I	CI_5Nb/I	Nb_2O_5/I	$B_4K_2O_7$	$B_4Na_2O_7$	Li_2O_3Si	$B_4Li_2O_7$	$Mg_3O_8P_2$	$AI_3F_{14}N$		
B_5H_9/I	$H_{10}O_8S$	$B_8K_2O_{13}$	$B_{10}H_{14}$	Al	В	Ba	Be	С		
Ca	Co	Cr	Cu	Fe	Li	Mg	Mn	Na		
Nb	Ni	Р	S	Si	Sr	Ti	V	Zn		
Zr	MgO	FeS	CaO	CaS	MgS	TiN	AIN	NiS		
MnS	TiO	VO	CuO	FeO	TiC	SiC	ZrC	H_2O		
TiO_2	ZrO_2	SiO_2	FeS_2	NiS_2	Mg_3N_2	Ni_3S_2	Ti_2O_3	Ti ₃ O ₅		
Ti_4O_7	V_2O_3	AI_2O_3	AI_2O_3	AI_2O_3	AI_2O_3	AI_2S_3	Cr_2O_3	$CaTiO_3$		
$MgTiO_3$	$MgSiO_3$	$CaSiO_3$	$MnSiO_3$	Na_2SiO_3	K_2SiO_3	Fe_2SiO_4	Ca_2SiO_4	Mg_2SiO_4		
$ZrSiO_4$	Fe_2O_3	Fe_3O_4	$MgAl_2O_4$	$MgTi_2O_5$	AI_2SiO_5	$CaMgSi_2$	Ca_2MgSi	Ca_2Al_2S		
$CaAl_2Si$	KAISi ₃ O	$NaAlSi_3$	AI_6Si_2O	MgC_2	Cr_3C_2	Mg_2C_3	AI_4C_3	Cr_7C_3		
$Cr_{23}C_6$										

Selected liquid/dust species considered in the EOS