Stellar/Planetary Atmospheres
 Part 09: NLTE rate equations

Peter Hauschildt
yeti@hs.uni-hamburg.de

Hamburger Sternwarte
Gojenbergsweg 112
21029 Hamburg
14. März 2018

Topics

- NLTE
- full rate equations
- general form of the rates
- numerical solution
full rate equations

$$
\begin{aligned}
& \sum_{j<i} n_{j}\left(R_{j i}+C_{j i}\right) \\
& \quad-n_{i}\left\{\sum_{j<i}\left(R_{i j}+C_{i j}\right)+\sum_{j>i}\left(\frac{n_{j}^{*}}{n_{i}^{*}}\right)\left(R_{i j}+C_{i j}\right)\right\} \\
& \quad+\sum_{j>i} n_{j}\left(\frac{n_{j}^{*}}{n_{i}^{*}}\right)\left(R_{j i}+C_{j i}\right)=0 .
\end{aligned}
$$

rate equations

- n_{i} : non-LTE population density of a level i
- n_{i}^{*} : LTE population density of the level i

$$
n_{i}^{*}=\frac{g_{i}}{g_{\kappa}} n_{\kappa} \frac{2 h^{3} n_{e}}{(2 \pi m)^{3 / 2}(k T)^{3 / 2}} \exp \left(-\frac{E_{i}-E_{\kappa}}{k T}\right) .
$$

- n_{k} : actual, i.e., non-LTE, population density of the ground state of the next higher ionization stage of the same element
- E_{i} : excitation energy of the level i
- E_{κ} : ionization energy from the ground state to the corresponding ground state of the next higher ionization stage

rate equations

- system of rate equations is closed by
- conservation equations for the nuclei
- charge conservation equation

rate equations

- upward (absorption) radiative rates $R_{i j}(i<j)$

$$
R_{i j}=\frac{4 \pi}{h c} \int_{0}^{\infty} \alpha_{i j}(\lambda) J_{\lambda}(\lambda) \lambda d \lambda
$$

- downward (emission) radiative rates $R_{j i}(i<j)$

$$
R_{j i}=\frac{4 \pi}{h c} \int_{0}^{\infty} \alpha_{j i}(\lambda)\left(\frac{2 h c^{2}}{\lambda^{5}}+J_{\lambda}(\lambda)\right) \exp \left(-\frac{h c}{k \lambda T}\right) \lambda d \lambda
$$

rate equations

- cross section $\alpha_{i j}(\lambda)$ of the transition $i \rightarrow j$ at the wavelength λ for bound-bound transitions

$$
\alpha_{i j}(\lambda)=\hat{\sigma}_{i j} \varphi_{\lambda}(\lambda)=\frac{h c}{4 \pi} \frac{\lambda_{i j}}{c} B_{i j} \varphi_{\lambda}(\lambda)
$$

and

$$
\alpha_{j i}(\lambda)=\hat{\sigma}_{i j} \phi_{\lambda}(\lambda)=\frac{h c}{4 \pi} \frac{\lambda_{i j}}{c} B_{i j} \phi_{\lambda}(\lambda)
$$

rate equations

- $\varphi_{\lambda}(\lambda)$: normalized absorption profile
- $\phi_{\lambda}(\lambda)$ is the normalized emission profile
- complete redistribution (CRD) \rightarrow

$$
\varphi_{\lambda}(\lambda)=\phi_{\lambda}(\lambda)
$$

and therefore

$$
\alpha_{i j}(\lambda)=\alpha_{j i}(\lambda)
$$

rate equations

- emission coefficient $\eta_{i j}(\lambda)$ for a bound-bound transition

$$
\eta_{i j}(\lambda)=\frac{2 h c^{2}}{\lambda^{5}} \frac{g_{i}}{g_{j}} \alpha_{j i}(\lambda) n_{j}
$$

- absorption coefficient:

$$
\kappa_{i j}(\lambda)=\alpha_{i j}(\lambda) n_{i}-\alpha_{j i}(\lambda) \frac{g_{i}}{g_{j}} n_{j}
$$

rate equations

- photo ionization and photo recombination transitions, the corresponding coefficients are

$$
\eta_{i \kappa}(\lambda)=\frac{2 h c^{2}}{\lambda^{5}} \alpha_{i \kappa}(\lambda) n_{\kappa}^{*} \exp \left(-\frac{h c}{k \lambda T}\right)
$$

and

$$
\kappa_{i \kappa}(\lambda)=\left[n_{i}-n_{\kappa}^{*} \exp \left(-\frac{h c}{k \lambda T}\right)\right] \alpha_{i \kappa}(\lambda)
$$

rate equations

- total absorption $\chi(\lambda)$ and emission $\eta(\lambda)$ coefficients:

$$
\eta(\lambda)=\sum_{i<j} \eta_{i j}(\lambda)+\tilde{\eta}(\lambda)
$$

and

$$
\chi(\lambda)=\sum_{i<j} \kappa_{i j}(\lambda)+\tilde{\kappa}(\lambda)+\tilde{\sigma}(\lambda)
$$

where $\tilde{\eta}(\lambda), \tilde{\kappa}(\lambda)$ and $\tilde{\sigma}(\lambda)$ summarize background emissivities, absorption and scattering coefficients

rate equations

- line and continuum scattering
- Λ-iteration does not work!
- must use fancier method

Operator Splitting method

- define a "rate operator" in analogy to the Λ-operator:

$$
R_{i j}=\left[R_{i j}\right][n]
$$

- [n]: 'population density operator', which can be considered as the vector of the population densities of all levels at all points in the medium under consideration
- radiative rates are (linear) functions of the mean intensity J

$$
J(\lambda)=\Lambda(\lambda) S(\lambda)
$$

Operator Splitting method

- using the Λ-operator write $\left[R_{i j}\right][n]$ as:

$$
\left[R_{i j}\right][n]=\frac{4 \pi}{h c} \int \alpha_{i j}(\lambda) \Lambda(\lambda) S(\lambda) \lambda d \lambda
$$

- rewrite the Λ-operator as

$$
\Psi(\lambda)=\Lambda(\lambda)[1 / \chi(\lambda)]
$$

where we have introduced the Ψ-operator

- $[1 / \chi(\lambda)]$ is the diagonal operator of multiplying by $1 / \chi(\lambda)$

Operator Splitting method

- using the Ψ-operator write $\left[R_{i j}\right]$ as

$$
\left[R_{i j}\right][n]=\frac{4 \pi}{h c} \int \alpha_{i j}(\lambda) \Psi(\lambda) \eta(\lambda) \lambda d \lambda
$$

where $\eta(\lambda)$ is a function of the population densities and the background emissivities

- write $\eta(\lambda)$ as

$$
\eta(\lambda)=\sum_{i<j} \eta_{i j}(\lambda)+\tilde{\eta}(\lambda) \equiv[E(\lambda)][n]
$$

where we have defined the linear and diagonal operator [$E(\lambda)$]

Operator Splitting method

- write the total contribution of a particular level k to the emissivity as

$$
\begin{aligned}
& \eta_{k}(\lambda)= \\
& \quad \frac{2 h c^{2}}{\lambda^{5}}\left\{\sum_{l} \frac{g_{l}}{g_{k}} \alpha_{k l}(\lambda)\right. \\
& +\sum_{l}\left[\alpha_{k l}(\lambda) \exp \left(-\frac{h c}{k \lambda T}\right)\right. \\
& \left.\left.\quad \frac{g_{l}}{g_{k}} \frac{2 h^{3} n_{e}}{(2 \pi m)^{3 / 2}(k T)^{3 / 2}} \exp \left(-\frac{E_{l}-E_{k}}{k T}\right)\right]\right\} n_{k} \\
& \equiv E_{k}(\lambda) n_{k}
\end{aligned}
$$

Operator Splitting method

- first sum is the contribution of the level k to all bound-bound transitions
- second sum is the contribution to all bound-free transitions
- $\rightarrow[E(\lambda)][n]$ has the form

$$
[E(\lambda)][n]=\sum_{k} E_{k}(\lambda) n_{k}+\tilde{\eta}(\lambda)
$$

- using the $[E(\lambda)]$-operator write $\left[R_{i j}\right][n]$ as

$$
\left[R_{i j}\right][n]=\frac{4 \pi}{h c}\left[\int_{0}^{\infty} \alpha_{i j}(\lambda) \Psi(\lambda) E(\lambda) \lambda d \lambda\right][n]
$$

Operator Splitting method

- corresponding expression for the emission rate-operator $\left[R_{j i}\right]$:
$\left[R_{j i}\right][n]$

$$
=\frac{4 \pi}{h c} \int_{0}^{\infty} \alpha_{j i}(\lambda)\left\{\frac{2 h c^{2}}{\lambda^{5}}+\Psi(\lambda)[E(\lambda)][n]\right\} \exp \left(-\frac{h c}{k \lambda T}\right) \lambda d \lambda
$$

Operator Splitting method

- with the rate operator write the rate equations in the form

$$
\begin{aligned}
& \sum_{j<i} n_{j}\left(\left[R_{j j}\right][n]+C_{j i}\right) \\
&-n_{i}\left\{\sum_{j<i}\left(\frac{n_{j}^{*}}{n_{i}^{*}}\right)\left(\left[R_{j j}\right][n]+C_{i j}\right)+\sum_{j>i}\left(\left[R_{i j}\right][n]+C_{i j}\right)\right\} \\
&+\sum_{j>i} n_{j}\left(\frac{n_{i}^{*}}{n_{j}^{*}}\right)\left(\left[R_{j j}\right][n]+C_{j i}\right) \\
&=0
\end{aligned}
$$

Operator Splitting method

- shows explicitly the non-linearity of the rate equations with respect to the population densities
- in addition, the rate equations are non-linear with respect to the electron density via the collisional rates and the charge conservation constraint condition
- split the rate operator, in analogy to the splitting of the Λ-operator, by

$$
\left[R_{i j}\right]=\left[R_{i j}^{*}\right]+\left(\left[R_{i j}\right]-\left[R_{i j}^{*}\right]\right) \equiv\left[R_{i j}^{*}\right]+\left[\Delta R_{i j}\right]
$$

(analog for the downward radiative rates)

- $\left[R_{i j}^{*}\right]$ is the "approximate rate-operator"

Operator Splitting method

- rewrite the rate $R_{i j}$ as

$$
R_{i j}=\left[R_{i j}^{*}\right]\left[n_{\mathrm{new}}\right]+\left[\Delta R_{j i}\right]\left[n_{\mathrm{old}}\right]
$$

and analogous for the downward radiative rates

- [$\left.n_{\text {old }}\right]$: current (old) population densities
- [$n_{\text {new }}$]: updated population densities to be calculated

Operator Splitting method

- $\left[R_{i j}^{*}\right]$ and $\left[R_{j i}^{*}\right]$ are linear functions of the population density operator $\left[n_{k}\right.$] of any level k, due to the linearity of η and the usage of the ψ-operator instead of the Λ-operator
- write the iteration scheme in the form:

$$
R_{i j}=\left[R_{i j}^{*}\right]\left[n_{\text {new }}\right]+\left(\left[R_{i j}\right]-\left[R_{i j}^{*}\right]\right)\left[n_{\text {old }}\right]
$$

Solution

$$
\begin{aligned}
& \sum_{j<i} n_{j, \text { new }}\left[R_{j i}^{*}\right]\left[n_{\text {new }}\right] \\
& \quad-n_{i, \text { new }}\left\{\sum_{j<i}\left[R_{i j}^{*}\right]\left[n_{\text {new }}\right]+\sum_{j>i}\left(\frac{n_{j}^{*}}{n_{i}^{*}}\right)\left[R_{i j}^{*}\right]\left[n_{\text {new }}\right]\right\} \\
& +\quad \sum_{j>i} n_{j, \text { new }}\left(\frac{n_{j}^{*}}{n_{i}^{*}}\right)\left[R_{j i}^{*}\right]\left[n_{\text {new }}\right] \\
& +\quad \sum_{j<i} n_{j, \text { new }}\left(\left[\Delta R_{j i}\right]\left[n_{\text {old }}\right]+C_{j i}\right) \\
& \quad-n_{i, \text { new }}\left\{\sum_{j<i}\left(\left[\Delta R_{i j}\right]\left[n_{\text {old }}\right]+C_{i j}\right)\right. \\
& \left.\quad+\sum_{j>i}\left(\frac{n_{j}^{*}}{n_{i}^{*}}\right)\left(\left[\Delta R_{i j}\right]\left[n_{\text {old }}\right]+C_{i j}\right)\right\}
\end{aligned}
$$

solution

- $\left[R_{i j}^{*}\right]$-operator contains information about the influence of a particular level on all transitions
- \rightarrow treat the complete multi-level non-LTE radiative transfer problem including active continua and overlapping lines
- $[E(\lambda)]$-operator \rightarrow information about the strength of the coupling of a radiative transition to all considered levels
- \rightarrow include or neglect certain couplings dynamically during the iterative solution

solution

- have not yet specified either a method for the FS of the RTE or a method for the construction of the approximate Λ-operator
- \rightarrow can use any method!
- above equation for $\left[n_{\text {new }}\right.$] is non-linear with respect to the $n_{i, \text { new }}$ and n_{e} :
- coefficients of the $\left[R_{i j}^{*}\right]$ and $\left[R_{j i}^{*}\right]$-operators are quadratic in $n_{i, \text { new }}$
- dependence of the Saha-Boltzmann factors and the collisional rates from the electron density

solution

- simplify the iteration scheme \rightarrow
- use a linearized and splitted iteration scheme for the solution
- replace terms of the form $n_{j, \text { new }}\left[R_{j i}^{*}\right]\left[n_{\text {new }}\right]$ by $n_{j, \text { old }}\left[R_{j i}^{*}\right]\left[n_{\text {new }}\right]$:

Solution

$$
\begin{aligned}
& \sum_{j<i} n_{j, \text { old }}\left[R_{j i}^{*}\right]\left[n_{\text {new }}\right] \\
& -n_{i, \text { old }}\left\{\sum_{j<i}\left[R_{i j}^{*}\right]\left[n_{\text {new }}\right]+\sum_{j>i}\left(\frac{n_{j}^{*}}{n_{i}^{*}}\right)\left[R_{i j}^{*}\right]\left[n_{\text {new }}\right]\right\} \\
& +\sum_{j>i} n_{j, \text { old }}\left(\frac{n_{j}^{*}}{n_{i}^{*}}\right)\left[R_{j i}^{*}\right]\left[n_{\text {new }}\right] \\
& +\sum_{j<i} n_{j, \text { new }}\left(\left[\Delta R_{j i}\right]\left[n_{\text {old }}\right]+c_{j i}\right) \\
& -n_{i, \text { new }}\left\{\sum_{j<i}\left(\left[\Delta R_{i j}\right]\left[n_{\text {old }}\right]+c_{i j}\right)\right. \\
& \left.+\sum_{j>i}\left(\frac{n_{j}^{*}}{n_{i}^{*}}\right)\left(\left[\Delta R_{i j}\right]\left[n_{\text {old }}\right]+c_{i j}\right)\right\} \\
& +\sum_{j>i} n_{j, \text { new }}\left(\frac{n_{j}^{*}}{n_{i}^{*}}\right)\left(\left[\Delta R_{j i}\right]\left[n_{\text {old }}\right]+c_{j i}\right)=0
\end{aligned}
$$

nested iterations

- nested iteration:
- keep n_{e} fixed at rate equation solution step
- treat every ion independently (assumes $N_{\kappa, \text { old }} \approx N_{\kappa, \text { new }}$)
- all collisional rates are evaluated using the current value of n_{e}

nested iterations

- compute departure coefficients

$$
b_{i}=n_{i} / n_{i}^{*}
$$

- n_{i} : new NLTE population density
- n_{i}^{*} : new 'LTE' population density computed with new n_{κ}
- use b_{i} to compute modified $Q_{\text {NLTE }}$

$$
Q_{\mathrm{NLTE}}=\sum b_{i} g_{i} \exp \left(-\frac{\chi_{i}}{k T}\right)
$$

- clean-up step by solving EOS with new $Q_{\text {NLTE }}$
- will first slow the iteration process
- in the convergence limit it will be very accurate

Convergence

Figure 1a

Convergence

Figure 1b

Convergence

Figure 2

Convergence

Figure 3a

Convergence

Figure 3b

Convergence

Figure 4a

Convergence

Figure 4b

Convergence

Figure 5

Convergence

Figure 6

Convergence

Figure 7

Convergence

Figure 8

Convergence

Figure 9

larger problems

- so far: small problems
- could be solved by other methods, e.g.,
- classical complete linearization
- equivalent two-level atom (ETLA)
- but these methods do not scale to large problems
- badly conditioned rate matrix!
- significantly limit the number of individual levels
- why large problems? realism!

Fe NLTE model atoms

larger problems

- possible approximation:
- lumping entire multiplets together in a single 'super-level'
- reducing the model atom to a manageable 30 to 50 levels
- energy spread within a multiplet can correspond to a wavelength spread as large as $200 \AA$
- opacity will not appear at the correct wavelength
- \rightarrow correction required, e.g., ODF
- \rightarrow problems in moving media etc.

larger problems

- example Fe II
- several 1000 bound energy levels
- > 10^{6} spectral lines
- majority of the levels are 'predicted'
- majority of lines are semi-empirical and/or very weak
- \rightarrow distinguish between
- well-known, strong lines and levels
- predicted lines and levels

larger problems

- separate 'primary' lines from 'secondary' lines
- \rightarrow defining a threshold in $\log (g f)$
- primary lines with gf-values larger than the threshold are treated in detail \rightarrow
- included as transitions in the rate equations
- include special wavelength points within the profile
- secondary lines
- included as background NLTE opacity sources
- not explicitly included in the rate equations
- treated by opacity sampling

larger problems

- distinction between primary and secondary transitions is just a matter of convenience and technical feasibility
- example Fe II
- threshold $\log (g f)=-3$
- selection considers only observed lines between observed levels
- include only lines with well known gf-values
- 617 levels included in NLTE
- 13675 primary NLTE lines

test models

Nova 15,000K LTE test

test models

test models

test models

test models

test models

Nova, Teff $=15000 \mathrm{~K}$, Fe II NLTE vs. LTE

test models

Nova, Teff $=25000 \mathrm{~K}$, Fe II NLTE vs. LTE

test models

test models

test models

real models
Teff $=20000 \mathrm{~K}$, LTE Fe II

real models
Teff $=20000 \mathrm{~K}$, NLTE Fe II

real models

real models

real models

real models

