Stellar/Planetary Atmospheres Part 08: 3D RT

Peter Hauschildt yeti@hs.uni-hamburg.de

Hamburger Sternwarte
Gojenbergsweg 112
21029 Hamburg
14. März 2018

Topics

- 3D radiative transfer
- basic idea
- continuum transfer (scattering)
- parallelization
- line transfer (2-level atom)
- periodic BCs

Framework

- Cartesian coordinates
- voxel grid ("cells")
- physical data constant within a voxel
- solve RT inside the voxels
- grid coordinates, e.g., $\left[-n_{x},+n_{x}\right]$
- \rightarrow voxel coordinates from $\left(-n_{x},-n_{y},-n_{z}\right)$ to $\left(+n_{x},+n_{y},+n_{z}\right)$

Data size

- small grid:
- $n_{x}=n_{y}=n_{z}=32$
- $\rightarrow(2 * 32+1)^{3}=274625$ voxels
- compare to typically 64 to 128 grid points in 1D!
- large grid:
- $n_{x}=n_{y}=n_{z}=128$
- $\rightarrow(2 * 128+1)^{3}=16974593$ voxels
- \rightarrow one scalar physical variable $(T) \rightarrow 129 \mathrm{MB}$

Framework

- solution through operator splitting

$$
\left[1-\Lambda^{*}(1-\epsilon)\right] \bar{J}_{\mathrm{new}}=\bar{J}_{\mathrm{fs}}-\Lambda^{*}(1-\epsilon) \bar{J}_{\text {old }},
$$

where $\bar{J}_{\mathrm{fs}}=\Lambda S_{\text {old }}$.

- need method to perform FS
- need method to construct Λ^{*}

Formal Solution

- basically 'any' method could be used
- short-characteristics
- full-characteristics ("ray-tracing")
- parameterized by direction (θ, ϕ)
- set of charactistics covering the border
- tracked through the voxel grid
- until they leave through exit border
- cover solid angles $\Omega=(\theta, \phi)$ to compute J etc

characteristics

Formal Solution

- along characteristic \rightarrow
- piecewise parabolic interpolation \& integration (PPM)
- piecewise linear interpolation \& integration (PLM)
- along a characteristic the RTE is

$$
\frac{d I}{d \tau}=I-S
$$

Formal Solution

- \rightarrow discretized formal solution

$$
\begin{aligned}
& I\left(\tau_{i}\right)= I\left(\tau_{i-1}\right) \exp \left(\tau_{i-1}-\tau_{i}\right) \\
& \quad+\int_{\tau_{i-1}}^{\tau_{i}} S(\tau) \exp \left(\tau-\tau_{i}\right) d \tau \\
& I\left(\tau_{i}\right) \equiv \\
& I_{i-1} \exp \left(-\Delta \tau_{i-1}\right)+\Delta I_{i}
\end{aligned}
$$

- i labels the points (steps) along a characteristic
- τ_{i} : optical depth along a characteristic

$$
\Delta \tau_{i-1}=\left(\chi_{i-1}+\chi_{i}\right)\left|s_{i-1}-s_{i}\right| / 2
$$

Formal Solution

- Source function is interpolated along i:

$$
\Delta I_{i}=\alpha_{i} S_{i-1}+\beta_{i} S_{i}+\gamma_{i} S_{i+1}
$$

Formal Solution

- parabolic interpolation

$$
\begin{aligned}
\alpha_{i}= & e_{0 i}+\left[e_{2 i}-\left(\Delta \tau_{i}+2 \Delta \tau_{i-1}\right) e_{1 i}\right] \\
& /\left[\Delta \tau_{i-1}\left(\Delta \tau_{i}+\Delta \tau_{i-1}\right)\right] \\
\beta_{i}= & {\left[\left(\Delta \tau_{i}+\Delta \tau_{i-1}\right) e_{1 i}-e_{2 i}\right] /\left[\Delta \tau_{i-1} \Delta \tau_{i}\right] } \\
\gamma_{i} & =\left[e_{2 i}-\Delta \tau_{i-1} e_{1 i}\right] /\left[\Delta \tau_{i}\left(\Delta \tau_{i}+\Delta \tau_{i-1}\right)\right]
\end{aligned}
$$

Formal Solution

- linear interpolation

$$
\begin{aligned}
\alpha_{i} & =e_{0 i}-e_{1 i} / \Delta \tau_{i-1} \\
\beta_{i} & =e_{1 i} / \Delta \tau_{i-1} \\
\gamma_{i} & =0
\end{aligned}
$$

- with

$$
\begin{aligned}
& e_{0 i}=1-\exp \left(-\Delta \tau_{i-1}\right) \\
& e_{1 i}=\Delta \tau_{i-1}-e_{0 i} \\
& e_{2 i}=\left(\Delta \tau_{i-1}\right)^{2}-2 e_{1 i}
\end{aligned}
$$

- and $\Delta \tau_{i} \equiv \tau_{i+1}-\tau_{i}$

Formal Solution

- integration over Ω :
- trapez or Simpson quadrature
- Monte-Carlo integration:

$$
J=\frac{1}{4 \pi} \int_{0}^{2 \pi} \int_{0}^{\pi} I \sin \theta d \theta d \phi
$$

- replaced by MC sum:

$$
J \approx \frac{1}{2 \pi^{2}} \sum l \sin \theta
$$

Formal Solution

- sum over all solid angle points (θ, ϕ)
- (θ, ϕ) randomly selected, equal weight
- also works for precribed (θ, ϕ) grids
- advanced: use Sobol sequence to cover solid angle better

Computation of Λ^{*}

- α, β, and $\gamma \rightarrow$
- construct diagonal and tri-diagonal Λ^{*} in 1D
- non-local Λ^{*} operators \rightarrow excellent convergence
- highly desirable to implement non-local Λ^{*} in 3D!

Computation of Λ^{*}

- tri-diagonal operator in the 1D case
- \rightarrow nearest neighbor Λ^{*} in 3D
- 1D: considers interaction of point with two direct neighbors
- 3D: interaction of a voxel with the $3^{3}-1=26$ surrounding voxels
- (or 6 neighbors in strictly face-centered view)
- 3D: storage requirements large but worth it!

Operator splitting step

- must solve linear system for non-local Λ^{*}

$$
\left[1-\Lambda^{*}(1-\epsilon)\right] \bar{J}_{\text {new }}=\bar{J}_{\mathrm{fs}}-\Lambda^{*}(1-\epsilon) \bar{J}_{\mathrm{old}}
$$

- for grids with $n_{x}=n_{y}=n_{z}>16$ this cannot be done directly
- use iterative solvers
- Jordan
- Gauss-Seidel
- can use additional convergence acceleration

results: LTE

results: $\epsilon=10^{-4}$

$\{2+64+1) 3$ spatial $+64 \times 2$ angle points

$\{2 * 64+1) \times 3$ spotial $+16 \times 2$ angle points

results: $\epsilon=10^{-4}$

results: $\epsilon=10^{-4}$

results: $\epsilon=10^{-4}$

results: convergence, $\epsilon=10^{-4}$

results: convergence, $\epsilon=10^{-4}$

results: convergence, $\epsilon=10^{-4}$

results: $\epsilon=10^{-8}$

results: $\epsilon=10^{-8}$

results: $\epsilon=10^{-8}$

results: convergence, $\epsilon=10^{-8}$

visualization: LTE

visualization: $\epsilon=10^{-4}$

visualization: $\epsilon=10^{-8}$

Parallelization

- many possible approaches
- simplest: all solid angle points can be done in parallel
- needs communication only at the very end
- SMP parallelization: different characteristics for single Ω

results: parallelization

line transfer

- same approach as in 1D
- uses 3D framework for wavelength dependent calculations
- then just compute

$$
\bar{J}=\int \phi(\lambda) J_{\lambda} d \lambda
$$

and

$$
\overline{\Lambda^{*}}=\int \phi(\lambda) \Lambda^{*} d \lambda
$$

line transfer

- operator splitting step for the line \rightarrow

$$
\left[1-\bar{\Lambda}^{*}(1-\epsilon)\right] \bar{J}_{\text {new }}=\bar{J}_{\mathrm{fs}}-\bar{\Lambda}^{*}(1-\epsilon) \bar{J}_{\text {old }}
$$

line test

- line parameterized
- $\chi_{I} / \chi_{c}=10^{6}$: strong line
- Gauss profile
- 32 wavelength points

results: LTE

results: LTE

results: $\epsilon_{I}=10^{-4}$

results: $\epsilon_{I}=10^{-8}$

results: $\epsilon_{I}=10^{-4}$

results: $\epsilon_{I}=10^{-8}$

convergence: $\epsilon_{I}=10^{-2}$

convergence: $\epsilon_{I}=10^{-4}$

convergence: $\epsilon_{I}=10^{-8}$

convergence

Parallelization

- each wavelength can be treated seperately!
- \rightarrow additional parallelization over wavelength
- can be combined with solid angle parallelization

results: parallelization

$N_{\text {worker }}$	$N_{\text {cluster }}$	FS $+\Lambda^{*}+$ OS step	FS+OS step
128	1	3018	1143
64	2	2595	1072
32	4	2340	1032
16	8	2308	1018
8	16	2264	1052
4	32	2318	1054

Periodic Boundary Conditions

- typically in stellar models
- PBCs in x and y (horizontal)
- z axis vertically (radial)
- PBCs implemented as wrap-around
- \rightarrow trivial!
- though beware the evils of θ !
- can be directly compared to plane parallel model
- compare line spectra for test models

PBCs: LTE

PBCs: $\epsilon_{\boldsymbol{I}}=10^{-2}$

PBCs: $\epsilon_{\rho}=10^{-4}$

PBCs: $\epsilon_{I}=10^{-8}$

visualization: hydro model

visualization: hydro model

visualization: hydro model

visualization: line transfer hydro model

