Stellar/Planetary Atmospheres Part 08: 3D RT

Peter Hauschildt yeti@hs.uni-hamburg.de

Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg

14. März 2018

Topics

- 3D radiative transfer
 - basic idea
 - continuum transfer (scattering)
 - parallelization
 - line transfer (2-level atom)
 - periodic BCs

Framework

- Cartesian coordinates
- voxel grid ("cells")
 - physical data constant within a voxel
 - solve RT inside the voxels
- grid coordinates, e.g., $[-n_x, +n_x]$
- ► → voxel coordinates from $(-n_x, -n_y, -n_z)$ to $(+n_x, +n_y, +n_z)$

Data size

small grid:

•
$$n_x = n_y = n_z = 32$$

- ▶ \rightarrow $(2 * 32 + 1)^3 = 274\,625$ voxels
- compare to typically 64 to 128 grid points in 1D!
- large grid:

•
$$n_x = n_y = n_z = 128$$

- ▶ \rightarrow $(2*128+1)^3 = 16\,974\,593$ voxels
- ightarrow one scalar physical variable (T) ightarrow 129 MB

Framework

solution through operator splitting

$$\left[1-\Lambda^*(1-\epsilon)
ight]ar{J}_{
m new}=ar{J}_{
m fs}-\Lambda^*(1-\epsilon)ar{J}_{
m old},$$

where
$$\bar{J}_{\rm fs} = \Lambda S_{\rm old}$$
.

- need method to perform FS
- need method to construct Λ^*

- basically 'any' method could be used
 - short-characteristics
 - full-characteristics ("ray-tracing")
- parameterized by direction (θ, ϕ)
- set of charactistics covering the border
- tracked through the voxel grid
- until they leave through exit border
- cover solid angles $\Omega = (\theta, \phi)$ to compute J etc

characteristics

- \blacktriangleright along characteristic \rightarrow
- piecewise parabolic interpolation & integration (PPM)
- piecewise linear interpolation & integration (PLM)
- along a characteristic the RTE is

$$\frac{dI}{d\tau} = I - S$$

 \blacktriangleright \rightarrow discretized formal solution

$$\begin{split} I(\tau_i) &= I(\tau_{i-1}) \exp(\tau_{i-1} - \tau_i) \\ &+ \int_{\tau_{i-1}}^{\tau_i} S(\tau) \exp(\tau - \tau_i) \, d\tau \\ I(\tau_i) &\equiv I_{i-1} \exp(-\Delta \tau_{i-1}) + \Delta I_i \end{split}$$

i labels the points (steps) along a characteristic *τ_i*: optical depth along a characteristic

$$\Delta \tau_{i-1} = (\chi_{i-1} + \chi_i)|\mathbf{s}_{i-1} - \mathbf{s}_i|/2$$

Source function is interpolated along i:

$$\Delta I_i = \alpha_i S_{i-1} + \beta_i S_i + \gamma_i S_{i+1}$$

parabolic interpolation

$$\alpha_{i} = e_{0i} + [e_{2i} - (\Delta \tau_{i} + 2\Delta \tau_{i-1})e_{1i}] \\ /[\Delta \tau_{i-1}(\Delta \tau_{i} + \Delta \tau_{i-1})] \\ \beta_{i} = [(\Delta \tau_{i} + \Delta \tau_{i-1})e_{1i} - e_{2i}]/[\Delta \tau_{i-1}\Delta \tau_{i}] \\ \gamma_{i} = [e_{2i} - \Delta \tau_{i-1}e_{1i}]/[\Delta \tau_{i}(\Delta \tau_{i} + \Delta \tau_{i-1})]$$

linear interpolation

$$\begin{aligned} \alpha_i &= e_{0i} - e_{1i} / \Delta \tau_{i-1} \\ \beta_i &= e_{1i} / \Delta \tau_{i-1} \\ \gamma_i &= 0 \end{aligned}$$

$$e_{0i} = 1 - \exp(-\Delta \tau_{i-1})$$

 $e_{1i} = \Delta \tau_{i-1} - e_{0i}$
 $e_{2i} = (\Delta \tau_{i-1})^2 - 2e_{1i}$

• and $\Delta \tau_i \equiv \tau_{i+1} - \tau_i$

• integration over Ω :

- trapez or Simpson quadrature
- Monte-Carlo integration:

$$J = \frac{1}{4\pi} \int_0^{2\pi} \int_0^{\pi} I \sin \theta \, d\theta d\phi$$

replaced by MC sum:

$$J\approx \frac{1}{2\pi^2}\sum I\sin\theta$$

- sum over all solid angle points (θ, ϕ)
- (θ, ϕ) randomly selected, equal weight
- also works for precribed (θ, ϕ) grids
- advanced: use Sobol sequence to cover solid angle better

Computation of Λ^*

- $\blacktriangleright~\alpha$, β , and $\gamma \rightarrow$
- construct diagonal and tri-diagonal Λ^* in 1D
- \blacktriangleright non-local Λ^* operators \rightarrow excellent convergence
- highly desirable to implement non-local Λ^* in 3D!

Computation of Λ^*

- tri-diagonal operator in the 1D case
- \blacktriangleright \rightarrow nearest neighbor Λ^* in 3D
- 1D: considers interaction of point with two direct neighbors
- ► 3D: interaction of a voxel with the 3³ 1 = 26 surrounding voxels
- (or 6 neighbors in strictly face-centered view)
- > 3D: storage requirements large but worth it!

Operator splitting step

- must solve linear system for non-local Λ^*

$$\left[1-\Lambda^*(1-\epsilon)
ight]ar{J}_{
m new}=ar{J}_{
m fs}-\Lambda^*(1-\epsilon)ar{J}_{
m old}$$

- ► for grids with $n_x = n_y = n_z > 16$ this cannot be done directly
- use iterative solvers
 - Jordan
 - Gauss-Seidel
- can use additional convergence acceleration

results: LTE

results: $\epsilon = 10^{-4}$

results: $\epsilon = 10^{-4}$

results: $\epsilon = 10^{-4}$

results: $\epsilon = 10^{-4}$

results: convergence, $\epsilon = 10^{-4}$

results: convergence, $\epsilon = 10^{-4}$

results: convergence, $\epsilon = 10^{-4}$

results: $\epsilon = 10^{-8}$

results: $\epsilon = 10^{-8}$

results: $\epsilon = 10^{-8}$

results: convergence, $\epsilon = 10^{-8}$

visualization: LTE

visualization: $\epsilon = 10^{-4}$

visualization: $\epsilon = 10^{-8}$

Parallelization

- many possible approaches
- simplest: all solid angle points can be done in parallel
- needs communication only at the very end
- SMP parallelization: different characteristics for single Ω

results: parallelization

line transfer

- same approach as in 1D
- uses 3D framework for wavelength dependent calculations
- then just compute

$$\bar{J} = \int \phi(\lambda) J_{\lambda} \, d\lambda$$

and

$$\bar{\Lambda^*} = \int \phi(\lambda) \Lambda^* \, d\lambda.$$

line transfer

- operator splitting step for the line ightarrow

$$\left[1-ar{\Lambda^*}(1-\epsilon)
ight]ar{J_{
m new}}=ar{J_{
m fs}}-ar{\Lambda^*}(1-\epsilon)ar{J_{
m old}}$$

line test

- line parameterized
- $\chi_I/\chi_c = 10^6$: strong line
- Gauss profile
- 32 wavelength points

results: LTE

results: LTE

results: $\epsilon_I = 10^{-4}$

results: $\epsilon_I = 10^{-8}$

results: $\epsilon_I = 10^{-4}$

results: $\epsilon_I = 10^{-8}$

convergence: $\epsilon_I = 10^{-2}$

convergence: $\epsilon_I = 10^{-4}$

convergence: $\epsilon_I = 10^{-8}$

convergence

Parallelization

- each wavelength can be treated seperately!
- \blacktriangleright \rightarrow additional parallelization over wavelength
- can be combined with solid angle parallelization

results: parallelization

$N_{\rm worker}$	$N_{\rm cluster}$	$FS+\Lambda^*+OS$ step	FS+OS step
128	1	3018	1143
64	2	2595	1072
32	4	2340	1032
16	8	2308	1018
8	16	2264	1052
4	32	2318	1054

Periodic Boundary Conditions

- typically in stellar models
- PBCs in x and y (horizontal)
- z axis vertically (radial)
- PBCs implemented as wrap-around
- \blacktriangleright \rightarrow trivial!
- though beware the evils of θ !

PBC testing

- can be directly compared to plane parallel model
- compare line spectra for test models

PBCs: LTE

PBCs: $\epsilon_I = 10^{-2}$ line transfer, epsilon(line) = 1e-2mean intensity J(lambda) 1011 10^{10} 9.900×10^{3} 9.950×10^{3} 1.005×104 1.000×10⁴ 1.010×10⁴ wavelength line transfer, epsilon(line) = 1e-2Flux F_lambda(lambda) 1011 10¹⁰ 10⁹ 9.900×10³ 9.950×10^{3} 1.010×10⁴ 1.000×10⁴ 1.005×10⁴ wavelength

PBCs: $\epsilon_I = 10^{-4}$ line transfer, epsilon(line) = 1e-4mean intensity J(lambda) 1011 10¹⁰ 10^{9} 9.900×10^{3} 9.950×10^{3} 1.005×104 1.000×10⁴ 1.010×10⁴ wavelength line transfer, epsilon(line) = 1e-4Flux F_lambda(lambda) 1011 10¹⁰ 10⁹ 9.900×10^{3} 9.950×10^{3} 1.005×10⁴ 1.010×10⁴

1.000×10⁴ wavelength PBCs: $\epsilon_I = 10^{-8}$ line transfer, epsilon(line) = 1e-8mean intensity J(lambda) 1011 10¹⁰ 10^{9} 9.900×10^{3} 9.950×10^{3} 1.005×104 1.000×10⁴ 1.010×10⁴ wavelength line transfer, epsilon(line) = 1e-8Flux F_lambda(lambda) 1011 10¹⁰ 10^{9} 108 9.900×10^{3} 9.950×10^{3} 1.000×10⁴ 1.005×10⁴ 1.010×10⁴ wavelength

visualization: hydro model

visualization: hydro model

visualization: hydro model

visualization: line transfer hydro model

