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Topics

I Classical treatment of line transfer
I Milne-Eddington Model
I scattering lines
I absorptive lines
I Schuster mechanism
I curve of growth
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Classical line transfer

I assumes 2 types of lines:
I scattering lines
I absorptive lines

I assume that fraction (1− ε) of photons interacting with
line are scattered

I → no contact to thermal pool
I assume that scattering is coherent & isotropic
I fraction ε of line photons thermalize
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Classical line transfer

I → line emission coefficient

ηl = Φνχl (εBν + (1− ε)Jν)

I Φν : normalized line profile
I χl : total line extinction coefficient
I Jν : mean intensity
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Classical line transfer

I pp RTE in the line:

µ
dIν
dz

= −χν Iν + κcBν + σcJν + Φνχl (εBν + (1− ε)Jν)

I and
χν = κc + σc + Φνχl

I with the optical depth

dτ = −χνdz
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Classical line transfer

I define

ρ =
σc

κc + σc

βν =
χlΦν

κc + σc

I to obtain

µ
dIν
dτν

= Iν −
[(1− ρ) + εβν ]Bν + [ρ + (1− ε)βν ] Jν

1 + βν

I define
λν =

[(1− ρ) + εβν ]

1 + βν
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Classical line transfer

I → simplify to

µ
dIν
dτν

= Iν − (1− λν)Jν − λνBν

I Milne-Eddington equation
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Milne-Eddington equation

I assume λν , ε, ρ are independent of τ
I assume κc = const. over the line
I to solve Milne-Eddington equation assume linear Bν :

Bν = a + bτν = a +
bτν

1 + βν
= a + pντν

I take the 0th moment of the M-E equation
dHν
dτν

= Jν − (1− λν)Jν − λνBν = λν(Jν − Bν)
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Milne-Eddington equation

I in the Eddington approximation Kν/Jν = 1/3 the solution
is (see before!)

Jν = a + pντν +
(
pν −

√
3a
)

exp
(
−
√

3λντν
) 1√

3 +
√
3λν

I the emergent flux is

Hν(0) =
Jν(0)√

3
=

1
3
pν +

√
3λνa

1 +
√
λν
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Milne-Eddington equation

I thermalization depths (where Jν → Bν):

τth =
1√
λν

I continuum: βν = 0→

τth = (1− ρ)−1/2

I very strong line: βν →∞

τth =
1√
ε

for isotropic & coherent scattering
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Milne-Eddington equation

I detailed analysis for the more realistic case of
I complete redistribution (CRD) where

ηl = Φνχl

(
εBν + (1− ε)J̄

)
which J̄ =

∫
ΦνJν dν
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Milne-Eddington equation

I gives these results for different line profiles:
I Gauss profile:

τth =
1√
ε

I Lorenz profile:

τth =
1√
ε2

I Voigt profile:
τth =

α√
ε2

12 / 33



emergent line profile

I use Hν(0) to compute flux profile of the line
I continuum: (βν = 0), λν = (1− ρ) so that

Hc(0) =
1
3
b + a

√
3(1− ρ)

1 +
√
1− ρ

I ’residual flux’ Rν = Hν/Hc in the line:

Rν =

[
pν +

√
3λνa

1 +
√
λν

][
1 +
√
1− ρ

b + a
√

3(1− ρ)

]

I 2 limiting cases:

13 / 33



scattering lines

I set ρ = 0 (no continuum scattering)
I set ε = 0 (pure scattering in the line)
I → λν = 1/(1 + βν) and

Rν = 2

[
b

1+βν
+ a
√

3
1+βν

]
(
1 +

√
1

1+βν

) (√
3a + b

)
I βν →∞ (very strong line) →

Rν = 0

I → very strong scattering line can be totally ’black’
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absorptive lines

I set ρ = 0 (no continuum scattering)
I set ε = 1 (pure absorption in the line)
I → λν = 1 and

Rν =

√
3a + b/(1 + βν)√

3a + b

I βν →∞ (very strong line) →

R0 =
1

1 + b/
√
3a
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absorptive lines

I in terms of Bν and its gradient

Bν(τ̄) = Bν(T0) +
dBν
d τ̄

τ̄ = B0 + B1τ̄

I set (from grey T (τ))

T 4 = T 4
0 (1 +

3
2
τ̄)
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absorptive lines

I this gives

R0 =

(
1 +

[√
3X0(κ̄/κ)/8

]−1
)−1

with
X0 =

u0

1− exp(−uo)

and
u0 =

hν

kT0
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absorptive lines

I Sun: T0 ≈ 4800K, λ = 5000Å, u0 ≈ 6
I so that X0 ≈ 6, κ̄ ≈ κ

I this gives
R0 ≈ 0.44

which is in fair agreement with many observed solar lines
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Schuster mechanism

I consider continuum scattering
I → picture changes significantly
I assume ρ = 1 (scattering dominates continuum) →

λν =
εβν

1 + βν

and

Rν =

[
1

1+βν
+
(
a
b

)√ 3εβν
1+βν

]
[
1 +

√
εβν

1+βν

]
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Schuster mechanism

I ε = 0→ Rν = 1/(1 + βν): line is in absorption
I ε = 1, βν →∞→ Rν → (

√
3/2)(a/b): line can be in

absorption or emission, depending on a/b.
I a/b > 2/

√
3→ line in emission for all βν

I a/b = 2/
√
3→ line core and extreme wing on

continuum, elsewhere in emission
I 1/

√
3 < a/b < 2/

√
3→ drawing

I a/b < 1/
√
3→ absorption feature
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curve of growth

I define equivalent width of a line

Wλ =

∫ (
1− Hλ

Hc

)
dλ =

∫
(1− Rλ) dλ

I curve of growth gives Wλ as function of the number of
absorbing atoms
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curve of growth

I simple approximation: assume line forms in homogeneous
layer at given (T ,Pe)

I LTE line absorption coefficient

χij(ν) = Φνχij

I line profile → Voigt function H(a, v)

I assume also a = const.
I βν = χij(ν)/χc

I independent of τ !
I absorptive line
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curve of growth

I → emergent flux

Fν = 2
∫

Bν(T (τ))E2

(∫ τ

0
(1 + βν) dt

)
(1 + βν) dτ
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curve of growth

I linear Planck function

Bν(T (τ)) = B0 + B1τ

I →
Fν = B0 +

2
3

(
B1

1 + βν

)
I continuum flux

Fc = B0 +
2
3
B1
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curve of growth

I depth of the line

Aν = 1− Rν = 1− Fν
Fc

=

βν
1+βν

1 + 3
2
B0
B1

I define for βν →∞

A0 =

[
1 +

3
2
B0

B1

]−1

I so that
Aν = A0

βν
1 + βν
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curve of growth
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curve of growth

I compute Wλ →

Wλ =

∫ ∞
−∞

Aν d∆ν = 2A0∆νD

∫ ∞
0

β(ν)

1 + β(ν)
dν

I factor ’2’: line symmetric around center and

β(v) =
χij

κc
H(a, v) = β0H(a, v)
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curve of growth

I convenient to define reduced equivalent width

W ∗ =
Wλ

2A0∆νD

I so that

W ∗ =

∫ ∞
0

β0H(a, v)

1 + β0H(a, v)
dv = W ∗(a, β0)
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curve of growth

I limiting cases:
I use schematic Voigt profile

H(a, v) = exp(−v 2) +
a√
πv 2

to analyze behavior of W ∗(a, β0)
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curve of growth

I for β0 < 1: contribution by line core

W ∗ = β0

∫ ∞
0

exp(−v 2)
[
1 + β0 exp(−v 2)

]−1
dv

= β0

∫ ∞
0

exp(−v 2)
(
1− β0 exp(−v 2) + · · ·

)
dv

=
1
2
√
πβ0

(
1− (β0/

√
2) + (β2

0/
√
3)− · · ·

)
dv

I weak lines → W ∗ depends linearly on the number of
absorbers, independent of ∆νD
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curve of growth

I ’saturation’ part:
I line core at maximal depths, line wings still weak
I approximate

W ∗ ≈
√

ln β0{1− [π2/24(ln β0)2]− · · · }

(semi-convergent series)
I → W ∗ ∝

√
ln β0, weak dependence!
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curve of growth

I very large β0:
I line wings dominate W ∗ →

W ∗ =

∫ ∞
0

(
1 +

v 2

c

)−1

dv =
1
2
πc

with c = a
√
β0/
√
b

I → ’damping’ or √ part of the curve of growth
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curve of growth
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