Stellar/Planetary Atmospheres Part 06: line transfer

Peter Hauschildt yeti@hs.uni-hamburg.de

Hamburger Sternwarte
Gojenbergsweg 112
21029 Hamburg
14. März 2018

Topics

- Classical treatment of line transfer
- Milne-Eddington Model
- scattering lines
- absorptive lines
- Schuster mechanism
- curve of growth

Classical line transfer

- assumes 2 types of lines:
- scattering lines
- absorptive lines
- assume that fraction $(1-\epsilon)$ of photons interacting with line are scattered
- \rightarrow no contact to thermal pool
- assume that scattering is coherent \& isotropic
- fraction ϵ of line photons thermalize

Classical line transfer

- \rightarrow line emission coefficient

$$
\eta_{I}=\Phi_{\nu} \chi_{I}\left(\epsilon B_{\nu}+(1-\epsilon) J_{\nu}\right)
$$

- Φ_{ν} : normalized line profile
- χ_{I} : total line extinction coefficient
- J_{ν} : mean intensity

Classical line transfer

- pp RTE in the line:

$$
\mu \frac{d I_{\nu}}{d z}=-\chi_{\nu} I_{\nu}+\kappa_{c} B_{\nu}+\sigma_{c} J_{\nu}+\Phi_{\nu} \chi_{I}\left(\epsilon B_{\nu}+(1-\epsilon) J_{\nu}\right)
$$

- and

$$
\chi_{\nu}=\kappa_{c}+\sigma_{c}+\Phi_{\nu} \chi_{I}
$$

- with the optical depth

$$
d \tau=-\chi_{\nu} d z
$$

Classical line transfer

- define

$$
\begin{aligned}
\rho & =\frac{\sigma_{c}}{\kappa_{c}+\sigma_{c}} \\
\beta_{\nu} & =\frac{\chi_{I} \Phi_{\nu}}{\kappa_{c}+\sigma_{c}}
\end{aligned}
$$

- to obtain

$$
\mu \frac{d l_{\nu}}{d \tau_{\nu}}=I_{\nu}-\frac{\left[(1-\rho)+\epsilon \beta_{\nu}\right] B_{\nu}+\left[\rho+(1-\epsilon) \beta_{\nu}\right] J_{\nu}}{1+\beta_{\nu}}
$$

- define

$$
\lambda_{\nu}=\frac{\left[(1-\rho)+\epsilon \beta_{\nu}\right]}{1+\beta_{\nu}}
$$

Classical line transfer

- \rightarrow simplify to

$$
\mu \frac{d I_{\nu}}{d \tau_{\nu}}=I_{\nu}-\left(1-\lambda_{\nu}\right) J_{\nu}-\lambda_{\nu} B_{\nu}
$$

- Milne-Eddington equation

Milne-Eddington equation

- assume $\lambda_{\nu}, \epsilon, \rho$ are independent of τ
- assume $\kappa_{c}=$ const. over the line
- to solve Milne-Eddington equation assume linear B_{ν} :

$$
B_{\nu}=a+b \tau_{\nu}=a+\frac{b \tau_{\nu}}{1+\beta_{\nu}}=a+p_{\nu} \tau_{\nu}
$$

- take the Oth moment of the M-E equation

$$
\frac{d H_{\nu}}{d \tau_{\nu}}=J_{\nu}-\left(1-\lambda_{\nu}\right) J_{\nu}-\lambda_{\nu} B_{\nu}=\lambda_{\nu}\left(J_{\nu}-B_{\nu}\right)
$$

Milne-Eddington equation

- in the Eddington approximation $K_{\nu} / J_{\nu}=1 / 3$ the solution is (see before!)

$$
J_{\nu}=a+p_{\nu} \tau_{\nu}+\left(p_{\nu}-\sqrt{3} a\right) \exp \left(-\sqrt{3 \lambda_{\nu}} \tau_{\nu}\right) \frac{1}{\sqrt{3}+\sqrt{3 \lambda_{\nu}}}
$$

- the emergent flux is

$$
H_{\nu}(0)=\frac{J_{\nu}(0)}{\sqrt{3}}=\frac{1}{3} \frac{p_{\nu}+\sqrt{3 \lambda_{\nu}} a}{1+\sqrt{\lambda_{\nu}}}
$$

Milne-Eddington equation

- thermalization depths (where $J_{\nu} \rightarrow B_{\nu}$):

$$
\tau_{\mathrm{th}}=\frac{1}{\sqrt{\lambda_{\nu}}}
$$

- continuum: $\beta_{\nu}=0 \rightarrow$

$$
\tau_{\mathrm{th}}=(1-\rho)^{-1 / 2}
$$

- very strong line: $\beta_{\nu} \rightarrow \infty$

$$
\tau_{\mathrm{th}}=\frac{1}{\sqrt{\epsilon}}
$$

for isotropic \& coherent scattering

Milne-Eddington equation

- detailed analysis for the more realistic case of
- complete redistribution (CRD) where

$$
\eta_{I}=\Phi_{\nu} \chi_{I}\left(\epsilon B_{\nu}+(1-\epsilon) \widehat{J}\right)
$$

which $\bar{J}=\int \Phi_{\nu} J_{\nu} d \nu$

Milne-Eddington equation

- gives these results for different line profiles:
- Gauss profile:

$$
\tau_{\mathrm{th}}=\frac{1}{\sqrt{\epsilon}}
$$

- Lorenz profile:

$$
\tau_{\mathrm{th}}=\frac{1}{\sqrt{\epsilon^{2}}}
$$

- Voigt profile:

$$
\tau_{\text {th }}=\frac{\alpha}{\sqrt{\epsilon^{2}}}
$$

emergent line profile

- use $H_{\nu}(0)$ to compute flux profile of the line
- continuum: $\left(\beta_{\nu}=0\right), \lambda_{\nu}=(1-\rho)$ so that

$$
H_{c}(0)=\frac{1}{3} \frac{b+a \sqrt{3(1-\rho)}}{1+\sqrt{1-\rho}}
$$

- 'residual flux' $R_{\nu}=H_{\nu} / H_{c}$ in the line:

$$
R_{\nu}=\left[\frac{p_{\nu}+\sqrt{3 \lambda_{\nu}} a}{1+\sqrt{\lambda_{\nu}}}\right]\left[\frac{1+\sqrt{1-\rho}}{b+a \sqrt{3(1-\rho)}}\right]
$$

- 2 limiting cases:

scattering lines

- set $\rho=0$ (no continuum scattering)
- set $\epsilon=0$ (pure scattering in the line)
$\rightarrow \lambda_{\nu}=1 /\left(1+\beta_{\nu}\right)$ and

$$
R_{\nu}=2 \frac{\left[\frac{b}{1+\beta_{\nu}}+a \sqrt{\frac{3}{1+\beta_{\nu}}}\right]}{\left(1+\sqrt{\frac{1}{1+\beta_{\nu}}}\right)(\sqrt{3} a+b)}
$$

- $\beta_{\nu} \rightarrow \infty$ (very strong line) \rightarrow

$$
R_{\nu}=0
$$

- \rightarrow very strong scattering line can be totally 'black'
- set $\rho=0$ (no continuum scattering)
- set $\epsilon=1$ (pure absorption in the line)
- $\rightarrow \lambda_{\nu}=1$ and

$$
R_{\nu}=\frac{\sqrt{3} a+b /\left(1+\beta_{\nu}\right)}{\sqrt{3} a+b}
$$

- $\beta_{\nu} \rightarrow \infty$ (very strong line) \rightarrow

$$
R_{0}=\frac{1}{1+b / \sqrt{3} a}
$$

- in terms of B_{ν} and its gradient

$$
B_{\nu}(\bar{\tau})=B_{\nu}\left(T_{0}\right)+\frac{d B_{\nu}}{d \bar{\tau}} \bar{\tau}=B_{0}+B_{1} \bar{\tau}
$$

- set (from grey $T(\tau)$)

$$
T^{4}=T_{0}^{4}\left(1+\frac{3}{2} \bar{\tau}\right)
$$

- this gives

$$
R_{0}=\left(1+\left[\sqrt{3} X_{0}(\bar{\kappa} / \kappa) / 8\right]^{-1}\right)^{-1}
$$

with

$$
X_{0}=\frac{u_{0}}{1-\exp \left(-u_{o}\right)}
$$

and

$$
u_{0}=\frac{h \nu}{k T_{0}}
$$

absorptive lines

- Sun: $T_{0} \approx 4800 \mathrm{~K}, \lambda=5000 \AA, u_{0} \approx 6$
- so that $X_{0} \approx 6, \bar{\kappa} \approx \kappa$
- this gives

$$
R_{0} \approx 0.44
$$

which is in fair agreement with many observed solar lines

Schuster mechanism

- consider continuum scattering
- \rightarrow picture changes significantly
- assume $\rho=1$ (scattering dominates continuum) \rightarrow

$$
\lambda_{\nu}=\frac{\epsilon \beta_{\nu}}{1+\beta_{\nu}}
$$

and

$$
R_{\nu}=\frac{\left[\frac{1}{1+\beta_{\nu}}+\left(\frac{a}{b}\right) \sqrt{\frac{3 \epsilon \beta_{\nu}}{1+\beta_{\nu}}}\right]}{\left[1+\sqrt{\frac{\epsilon \beta_{\nu}}{1+\beta_{\nu}}}\right]}
$$

Schuster mechanism

- $\epsilon=0 \rightarrow R_{\nu}=1 /\left(1+\beta_{\nu}\right)$: line is in absorption
- $\epsilon=1, \beta_{\nu} \rightarrow \infty \rightarrow R_{\nu} \rightarrow(\sqrt{3} / 2)(a / b)$: line can be in absorption or emission, depending on a / b.
- $a / b>2 / \sqrt{3} \rightarrow$ line in emission for all β_{ν}
- $a / b=2 / \sqrt{3} \rightarrow$ line core and extreme wing on continuum, elsewhere in emission
- $1 / \sqrt{3}<a / b<2 / \sqrt{3} \rightarrow$ drawing
- $a / b<1 / \sqrt{3} \rightarrow$ absorption feature

curve of growth

- define equivalent width of a line

$$
W_{\lambda}=\int\left(1-\frac{H_{\lambda}}{H_{c}}\right) d \lambda=\int\left(1-R_{\lambda}\right) d \lambda
$$

- curve of growth gives W_{λ} as function of the number of absorbing atoms

curve of growth

- simple approximation: assume line forms in homogeneous layer at given $\left(T, P_{e}\right)$
- LTE line absorption coefficient

$$
\chi_{i j}(\nu)=\Phi_{\nu} \chi_{i j}
$$

- line profile \rightarrow Voigt function $H(a, v)$
- assume also $a=$ const.
- $\beta_{\nu}=\chi_{i j}(\nu) / \chi_{c}$
- independent of τ !
- absorptive line

curve of growth

- \rightarrow emergent flux

$$
F_{\nu}=2 \int B_{\nu}(T(\tau)) E_{2}\left(\int_{0}^{\tau}\left(1+\beta_{\nu}\right) d t\right)\left(1+\beta_{\nu}\right) d \tau
$$

curve of growth

- linear Planck function

$$
B_{\nu}(T(\tau))=B_{0}+B_{1} \tau
$$

$-\rightarrow$

$$
F_{\nu}=B_{0}+\frac{2}{3}\left(\frac{B_{1}}{1+\beta_{\nu}}\right)
$$

- continuum flux

$$
F_{c}=B_{0}+\frac{2}{3} B_{1}
$$

curve of growth

- depth of the line

$$
A_{\nu}=1-R_{\nu}=1-\frac{F_{\nu}}{F_{c}}=\frac{\frac{\beta_{\nu}}{1+\beta_{\nu}}}{1+\frac{3}{2} \frac{B_{0}}{B_{1}}}
$$

- define for $\beta_{\nu} \rightarrow \infty$

$$
A_{0}=\left[1+\frac{3}{2} \frac{B_{0}}{B_{1}}\right]^{-1}
$$

- so that

$$
A_{\nu}=A_{0} \frac{\beta_{\nu}}{1+\beta_{\nu}}
$$

curve of growth

Figure 10-1
Development of a spectrum line with increasing number of atoms along the line of sight. The line is assumed to be formed in pure absorption. For $\beta_{0} \lesssim 1$, the line strength is direetly proportional to the number of absorbers. For $30 \leftrightarrows \beta_{0} \lesssim 10^{3}$ the line is saturated, but the wings have not yet begtin to develop. For $\beta_{0} \gtrsim 10^{4}$ the tine wings are strong had eontribute most of the equivalent width.

curve of growth

- compute $W_{\lambda} \rightarrow$

$$
W_{\lambda}=\int_{-\infty}^{\infty} A_{\nu} d \Delta \nu=2 A_{0} \Delta \nu_{D} \int_{0}^{\infty} \frac{\beta(\nu)}{1+\beta(\nu)} d \nu
$$

- factor '2': line symmetric around center and

$$
\beta(v)=\frac{\chi_{i j}}{\kappa_{c}} H(a, v)=\beta_{0} H(a, v)
$$

curve of growth

- convenient to define reduced equivalent width

$$
W^{*}=\frac{W_{\lambda}}{2 A_{0} \Delta \nu_{D}}
$$

- so that

$$
W^{*}=\int_{0}^{\infty} \frac{\beta_{0} H(a, v)}{1+\beta_{0} H(a, v)} d v=W^{*}\left(a, \beta_{0}\right)
$$

curve of growth

- limiting cases:
- use schematic Voigt profile

$$
H(a, v)=\exp \left(-v^{2}\right)+\frac{a}{\sqrt{\pi} v^{2}}
$$

to analyze behavior of $W^{*}\left(a, \beta_{0}\right)$

curve of growth

- for $\beta_{0}<1$: contribution by line core

$$
\begin{aligned}
W^{*} & =\beta_{0} \int_{0}^{\infty} \exp \left(-v^{2}\right)\left[1+\beta_{0} \exp \left(-v^{2}\right)\right]^{-1} d v \\
& =\beta_{0} \int_{0}^{\infty} \exp \left(-v^{2}\right)\left(1-\beta_{0} \exp \left(-v^{2}\right)+\cdots\right) d v \\
& =\frac{1}{2} \sqrt{\pi} \beta_{0}\left(1-\left(\beta_{0} / \sqrt{2}\right)+\left(\beta_{0}^{2} / \sqrt{3}\right)-\cdots\right) d v
\end{aligned}
$$

- weak lines $\rightarrow W^{*}$ depends linearly on the number of absorbers, independent of $\Delta \nu_{D}$

curve of growth

- 'saturation' part:
- line core at maximal depths, line wings still weak
- approximate

$$
W^{*} \approx \sqrt{\ln \beta_{0}}\left\{1-\left[\pi^{2} / 24\left(\ln \beta_{0}\right)^{2}\right]-\cdots\right\}
$$

(semi-convergent series)

- $\rightarrow W^{*} \propto \sqrt{\ln \beta_{0}}$, weak dependence!

curve of growth

- very large β_{0} :
- line wings dominate $W^{*} \rightarrow$

$$
W^{*}=\int_{0}^{\infty}\left(1+\frac{v^{2}}{c}\right)^{-1} d v=\frac{1}{2} \pi c
$$

with $c=a \sqrt{\beta_{0}} / \sqrt{b}$

- \rightarrow 'damping' or $\sqrt{ }$ part of the curve of growth

curve of growth

figure 10-2
Curves of growth for pure absorption lines. Note that the larger the value of a, the sooner the square-toot part of the curve rises away from the flat part.

