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Topics

I Numerical RT part 1
I The operator splitting method
I a method for the FS
I computing Λ∗
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Numerical solution

I there are many numerical RT methods
I too many to describe them all

I direct methods
I iterative methods

I all methods need to deal with scattering!
I here: I will describe the currently most used method
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Numerical solution

I recap: scattering →

S = (1− ε)J + εB

ε =
κ

κ + σ

I S depends on B and (unknown) J
I → self-consistent solution for J required
I direct solution expensive
I use iterative method
I eigenvalues of iteration matrix close to unity
→ use operator splitting to reduce eigenvalues of
amplification matrix
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Operator Splitting in RT

I Formal solution (how? see below!)

J = ΛS

I Λ-iteration:

J̄new = ΛSold, Snew = (1− ε)J̄new + εB

I does not work for τ >> 1 & small ε
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Operator Splitting in RT

I Solution: Split Λ operator

Λ = Λ∗ + (Λ− Λ∗)

I → iteration procedure

J̄new = Λ∗Snew + (Λ− Λ∗)Sold

6 / 38



Operator Splitting in RT

I using
S = (1− ε)J + εB

and
J̄fs = ΛSold

I gives

[1− Λ∗(1− ε)] J̄new = J̄fs − Λ∗(1− ε)J̄old
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Operator Splitting in RT

I solved directly to obtain J̄new

J̄new = [1− Λ∗(1− ε)]−1 (J̄fs − Λ∗(1− ε)J̄old)
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Operator Splitting in RT

I mathematically:
I same family as Jacobi or Gauss-Seidel methods
I general form

Mxk+1 = Nxk + b

for solution of linear system

Ax = b

with
A = M − N
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Operator Splitting in RT

I operator splitting →

M = 1− Λ∗(1− ε)

and
N = (Λ− Λ∗)(1− ε)

for the system matrix

A = 1− Λ(1− ε)
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Operator Splitting in RT

I convergence of the iterations →
I spectral radius ρ(G ) < 1
I with amplification matrix

G = M−1N
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Operator Splitting in RT

I for this to help
I eigenvalues of amplification matrix G � 1
I works best if Λ∗ = Λ (direct solution, how? see below!)
I → expensive (?)
I diagonal Λ∗ →

simple but slow convergence
I band-matrix Λ∗ →

rapid convergence, harder to construct
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Operator Splitting in RT

I many possible ways to construct Λ∗

I best: elements of Λ itself
I no estimates/free parameters
I ’easy’ to compute & use
I build band-matrix Λ∗

13 / 38



Formal Solution

I pp RTE:

µ
dI

dτr
= I − S

I discretize τr (spatial) space
I discretize µ (angle) space
I light path → lines of constant µ
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Formal Solution

I → characteristics of the RTE
I along a characteristic

dI

dτ
= I − S

I where I = I (µ) and τ = τr/µ are now measured along the
characteristic
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Formal Solution

I spherical geometry:

µ
∂I

∂r
+

1− µ2

r

∂I

∂µ
= χ(S − I )

I characteristics = light paths
I static medium → straight lines
I parameterized by impact parameter p

µ(r) = ±
√

1− p2/r 2

gives µ for each point along the characteristic p
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Formal Solution

I → along a characteristic µ varies in spherical geometry
I but the RTE along the characteristic looks like

dI

dτ
= I − S

I where I = I (µ(p)) and τ are now measured along the
characteristic
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Formal Solution

I → spherical and pp cases reduced to FS along the
characteristic

I J computed by numerical quadrature
I need to compute I along the characteristics
I basic idea:

I approximate S along the characteristic by piece-wise
linear or parabolic functions

I analytically solve FS along the characteristic for I
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Formal Solution
I this scheme gives

I (τi) = I (τi−1) exp(τi−1 − τi) +

∫ τi

τi−1

S(τ) exp(τ − τi) dτ

I (τi) ≡ Ii−1 exp(−∆τi−1) + ∆Ii

I τi denotes the optical depth along the ray with τ1 ≡ 0
and τi−1

I τ is calculated using piecewise linear interpolation of χ
along the ray

∆τi−1 = (χi−1 + χi)|si−1 − si |/2
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Formal Solution

I S(τ) along a characteristic is interpolated by linear or
parabolic polynomials so that

∆Ii = αiSi−1 + βiSi + γiSi+1

with

αi = e0i + [e2i − (∆τi + 2∆τi−1)e1i ]/[∆τi−1(∆τi + ∆τi−1)]
βi = [(∆τi + ∆τi−1)e1i − e2i ]/[∆τi−1∆τi ]
γi = [e2i −∆τi−1e1i ]/[∆τi(∆τi + ∆τi−1)]

for parabolic interpolation and
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Formal Solution

αi = e0i − e1i/∆τi−1

βi = e1i/∆τi−1

γi = 0

for linear interpolation.
I auxiliary functions:

e0i = 1− exp(−∆τi−1)
e1i = ∆τi−1 − e0i

e2i = (∆τi−1)2 − 2e1i
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Formal Solution

I ∆τi ≡ τi+1 − τi is the optical depth along the
characteristic

I must use linear coefficients at the last integration point
along each ray

I some times linear may be better than parabolic (why?)
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Formal Solution

I spherical case:
I tangent rays: FS starts at point 2 with I1 given as the

outer BC and proceeds along the ray
I FS for ’core-intersecting’ ray: split into two parts:

1. integration from point 1 to point N, where I1 is given as
the outer boundary condition and

2. integration from point N + 2 to point 2N, where IN+1 is
given as the inner boundary condition.

I pp case: like ’core intersecting’ spherical case
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Formal Solution

I with this procedure, the I ’s can be computed for given S

I for all characteristics → full RF is known
I could be used for Λ iteration for ε ≈ 1
I next step: devise procedure to compute Λ∗!
I space-discretized →

Λ operator → Λ matrix
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constructing Λ∗

I basic idea:
I set S = (0, . . . , 1, 0, . . .)
I perform FS
I → delivers one column of Λ matrix
I repeat for all spatial (radial) points
I → compute Λ matrix

I if done like described → very expensive!
I however, it can be done analytically!
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constructing Λ∗

I describe spherical case
I pp case → just consider ’core intersecting’ characteristics
I write

Λ∗ = Λt + Λc

I Λt : contributions from tangential characteristics
I Λc : contributions from core intersecting characteristics
I do not construct full Λ matrix (time!)
I construct tri-diagonal Λ∗

26 / 38



constructing Λ∗

I Λt construction
I 1 or 2 intersection of tangential characteristics with radial

grid points
I label characteristic tangent to shell i + 1 with the index i

I → construction of Λt contributions
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constructing Λ∗

I (a) 1 < j ≤ i

Λt
j−1,j +=

∑
i

(wj−1,is1,i + wk+1,is6,i)

Λt
j ,j +=

∑
i

(wj ,is2,i + wk,is5,i)

Λt
j+1,j +=

∑
i

{
(wj+1,is3,i + wk−1,is4,i) for i 6= j

wk−1,is4,i for i = j

with k = 2(i − 1)− j and
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constructing Λ∗

s1,i = γj−1,i

s2,i = s1,i exp(−∆τj−1,i) + βj ,i
s3,i = s2,i exp(−∆τj ,i) + αj+1,i

s4,i = s3,i exp(−∆τj+1→k−1,i) + γk−1,i

s5,i = s4,i exp(−∆τk−1,i) + βk,i
s6,i = s5,i exp(−∆τk,i) + αk+1,i
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constructing Λ∗

I (b) j = 1

Λt
1,1 +=

∑
i

(w1,is2,i + wk,is5,i)

Λt
2,1 +=

∑
i

{
(w2,is3,i + wk−1,is4,i) for i 6= 1,
wk−1,is4,i for i = 1,

with k = 2i + 1 and
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constructing Λ∗

s2,i = β1,i

s3,i = s2,i exp(−∆τ1,i) + α2,i

s4,i = s3,i exp(−∆τ2→k−1,i) + γk−1,i

s5,i = s4,i exp(−∆τk−1,i) + βk,i
s6,i = s5,i exp(−∆τk,i) + αk+1,i
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constructing Λ∗

I (c) j = i + 1 (point of tangency)

Λt
i ,i+1 +=

∑
i

(wi ,is1,i + wi+2,is3,i)

Λt
i+1,i+1 +=

∑
i

wi ,is2,i
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constructing Λ∗

s1,i = γi ,i
s2,i = s1,i exp(−∆τi ,i) + βi+1,i

s3,i = s2,i exp(−∆τi+1,i) + αi+1,i
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constructing Λ∗

I ∆τj+1→k−1,i : optical depth along the characteristic
I wj ,i : µ quadrature weights
I can be extended to full Λ matrix!
I core intersecting characteristics: simplified version of

above
I this method can be used also in moving media
I can be extended to line transfer (later)
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Convergence: static
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Convergence: expanding
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relative Performance

I SN: vmax = 0.13c , extension 100
I Fireball: vmax = 0.9c , extension 106

I +: Cray Y/MP C90, ∗: Cray-2,
other: IBM 3090-500E VF
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relative Performance

I historical ... ca. 1993
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