Stellar/Planetary Atmospheres Part 04: the scattering problem

Peter Hauschildt yeti@hs.uni-hamburg.de

> Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg

14. März 2018

Topics

- The scattering problem
- Λ iteration problem

The scattering problem

- scattering is the *fundamental* physical problem in RT
- scattering couples different spatial locations of the atmosphere
- \blacktriangleright \rightarrow global transport of photons over large distances
- \blacktriangleright causes large differences between B_{ν} and J_{ν} even for $\tau_{\nu}\gg 1$

The scattering problem

consider

$$S = (1 - \epsilon)J + \epsilon B$$

the FS of the pp RTE

$$\mu \frac{dI}{d\tau} = I - S$$

can be written with the Λ operator

$$J(au) = \Lambda_{ au}[S] = \Lambda_{ au}[\epsilon B] + \Lambda_{ au}[(1-\epsilon)J]$$

- $\blacktriangleright~\epsilon=1 \rightarrow$ no problem, direct solution
- $\epsilon = 0 \rightarrow \text{grey atmosphere solution}$
- consider $0 < \epsilon < 1$

- idea: fix-point iteration
- start with

$$J = B$$

as initial guess

iterate:

$$J^{(n)} = \Lambda_{\tau}[S^{(n-1)}] = \Lambda_{\tau}[\epsilon B] + \Lambda_{\tau}[(1-\epsilon)J^{(n-1)}]$$

repeat until convergence, e.g.,

$$|J^{(n)} - J^{(n-1)}| \ll 1$$

- works mathematically (Λ is contracting)
- problem: fails in praxis if $\epsilon \ll 1!$
- ► why?
- consider linear (in τ) Planck function:

$$B(\tau) = a + b\tau$$

$\boldsymbol{\Lambda}$ iteration

• *H* is determined by

$$\frac{dH}{d\tau} = J - S = \epsilon(J - B)$$

► *K* is determined by

$$\frac{dK}{d\tau} = H$$

use Eddington approximation

$$K = \frac{1}{3}J$$

► substitute
$$\frac{dK}{d\tau} = H$$
 into $\frac{dH}{d\tau} \rightarrow$
 $\frac{1}{3}\frac{d^2J}{d\tau^2} = \epsilon(J-B) = \frac{1}{3}\frac{d^2(J-B)}{d\tau^2}$

- for $\tau \to \infty$ we must have $J \to B$
- $\blacktriangleright \ \rightarrow \ {\rm solution}$

$$J(au) = m{a} + b au + (b - \sqrt{3}m{a}) \exp\left(-\sqrt{3\epsilon} au
ight) rac{1}{\sqrt{3} + \sqrt{3\epsilon}}$$

this shows the essential physics:

- J may be very different from B for small τ :
 - set b = 0 so that a = B = const.

$$J(0) = \frac{\sqrt{\epsilon}}{1 + \sqrt{\epsilon}} B$$

• if $\epsilon \ll 1$ then $J(0) \ll B$

- $J \rightarrow B$ only for very large τ :
 - \blacktriangleright only if $\tau >> 1/\sqrt{\epsilon} \gg 1$
- $\blacktriangleright~1/\sqrt{\epsilon}$ is called the *thermalization depth*

- \blacktriangleright caused by ϵ being the photon destruction probability
- \blacktriangleright to ensure thermalization, a photon needs to be scattered $\approx 1/\epsilon$ times
- $\blacktriangleright \rightarrow$ it will random walk a large optical distance without destruction
- $ightarrow
 ightarrow {
 m coupling between different regions}$
- $\blacktriangleright \ \tau < 1/\sqrt{\epsilon} \rightarrow$ photon has a chance to escape through the surface
- ► *J* < *B*!

Λ is given by

$$\Lambda_{\tau}[S(t)] = \frac{1}{2} \int_0^{\infty} E_1(|t-\tau|)S(t) dt$$

► for large
$$\Delta au$$

 $E_1(\Delta au) \approx rac{\exp(-\Delta au)}{\Delta au}$

 \blacktriangleright therefore, Λ propagates information over a distance of $\Delta\tau\approx 1$

- start iteration with $J = B \rightarrow$
- need $\approx 1/\sqrt{\epsilon}$ iterations to reach outer boundary
- $\epsilon = 10^{-8} \rightarrow 10^4$ iterations
- ▶ in praxis, corrections J⁽ⁿ⁾ J⁽ⁿ⁻¹⁾ tend to stabilize at small values
- \blacktriangleright \rightarrow apparent convergence although still far (dex) from solution