Stellar/Planetary Atmospheres
 Part 04: the scattering problem

Peter Hauschildt
yeti@hs.uni-hamburg.de

Hamburger Sternwarte
Gojenbergsweg 112
21029 Hamburg
14. März 2018

Topics

- The scattering problem
- Λ iteration problem

The scattering problem

- scattering is the fundamental physical problem in RT
- scattering couples different spatial locations of the atmosphere
- \rightarrow global transport of photons over large distances
- causes large differences between B_{ν} and J_{ν} even for $\tau_{\nu} \gg 1$

The scattering problem

- consider

$$
S=(1-\epsilon) J+\epsilon B
$$

- the FS of the pp RTE

$$
\mu \frac{d l}{d \tau}=I-S
$$

can be written with the Λ operator

$$
J(\tau)=\Lambda_{\tau}[S]=\Lambda_{\tau}[\epsilon B]+\Lambda_{\tau}[(1-\epsilon) J]
$$

- $\epsilon=1 \rightarrow$ no problem, direct solution
- $\epsilon=0 \rightarrow$ grey atmosphere solution
- consider $0<\epsilon<1$

Λ iteration

- idea: fix-point iteration
- start with

$$
J=B
$$

as initial guess

- iterate:

$$
J^{(n)}=\Lambda_{\tau}\left[S^{(n-1)}\right]=\Lambda_{\tau}[\epsilon B]+\Lambda_{\tau}\left[(1-\epsilon) J^{(n-1)}\right]
$$

- repeat until convergence, e.g.,

$$
\left|J^{(n)}-J^{(n-1)}\right| \ll 1
$$

Λ iteration

- works mathematically (\wedge is contracting)
- problem: fails in praxis if $\epsilon \ll 1$!
- why?
- consider linear (in τ) Planck function:

$$
B(\tau)=a+b \tau
$$

Λ iteration

- H is determined by

$$
\frac{d H}{d \tau}=J-S=\epsilon(J-B)
$$

- K is determined by

$$
\frac{d K}{d \tau}=H
$$

Λ iteration

- use Eddington approximation

$$
K=\frac{1}{3} J
$$

- substitute $\frac{d K}{d \tau}=H$ into $\frac{d H}{d \tau} \rightarrow$

$$
\frac{1}{3} \frac{d^{2} J}{d \tau^{2}}=\epsilon(J-B)=\frac{1}{3} \frac{d^{2}(J-B)}{d \tau^{2}}
$$

Λ iteration

- for $\tau \rightarrow \infty$ we must have $J \rightarrow B$
- \rightarrow solution

$$
J(\tau)=a+b \tau+(b-\sqrt{3} a) \exp (-\sqrt{3 \epsilon} \tau) \frac{1}{\sqrt{3}+\sqrt{3 \epsilon}}
$$

- this shows the essential physics:

Λ iteration

- J may be very different from B for small τ :
- set $b=0$ so that $a=B=$ const.

$$
J(0)=\frac{\sqrt{\epsilon}}{1+\sqrt{\epsilon}} B
$$

- if $\epsilon \ll 1$ then $J(0) \ll B$

Λ iteration

- $J \rightarrow B$ only for very large τ :
- only if $\tau \gg 1 / \sqrt{\epsilon} \gg 1$
- $1 / \sqrt{\epsilon}$ is called the thermalization depth

Λ iteration

- caused by ϵ being the photon destruction probability
- to ensure thermalization, a photon needs to be scattered $\approx 1 / \epsilon$ times
- \rightarrow it will random walk a large optical distance without destruction
- \rightarrow coupling between different regions
- $\tau<1 / \sqrt{\epsilon} \rightarrow$ photon has a chance to escape through the surface
- $J<B$!

Λ iteration

- Λ is given by

$$
\Lambda_{\tau}[S(t)]=\frac{1}{2} \int_{0}^{\infty} E_{1}(|t-\tau|) S(t) d t
$$

- for large $\Delta \tau$

$$
E_{1}(\Delta \tau) \approx \frac{\exp (-\Delta \tau)}{\Delta \tau}
$$

- therefore, Λ propagates information over a distance of $\Delta \tau \approx 1$

Λ iteration

- start iteration with $J=B \rightarrow$
- need $\approx 1 / \sqrt{\epsilon}$ iterations to reach outer boundary
- $\epsilon=10^{-8} \rightarrow 10^{4}$ iterations
- in praxis, corrections $J^{(n)}-J^{(n-1)}$ tend to stabilize at small values
- \rightarrow apparent convergence although still far (dex) from solution

