Stellar/Planetary Atmospheres
 Part 03: grey atmosphere

Peter Hauschildt yeti@hs.uni-hamburg.de

Hamburger Sternwarte

Gojenbergsweg 112
21029 Hamburg
14. März 2018

Topics

- The grey atmosphere
- Milne's equation
- opacity means
- approximate solution

grey atmosphere

- grey approximation
- assume wavelength independent extinction coefficient

$$
\chi_{\nu}=\chi=\text { const. in } \nu
$$

- not really realistic but

1. non-grey problem can be reduced to gray case with opacity averages
2. useful baseline for analyses of non-grey problems

grey atmosphere

- consider grey atmosphere in RE!
- pp RTE

$$
\mu \frac{d l_{\nu}}{d \tau_{\nu}}=I_{\nu}-S_{\nu}
$$

- reduces in the grey approximation to

$$
\mu \frac{d l}{d \tau}=I-S
$$

grey atmosphere

- where

$$
\begin{aligned}
I & =\int_{0}^{\infty} I_{\nu} d \nu \\
\tau & =\int_{0}^{\infty} \tau_{\nu} d \nu
\end{aligned}
$$

and so on

grey atmosphere

- the condition of RE is

$$
\int_{0}^{\infty} \chi_{\nu} S_{\nu} d \nu=\int_{0}^{\infty} \chi_{\nu} J_{\nu} d \nu
$$

- this implies in the grey atmosphere

$$
S=J
$$

\rightarrow the grey RTE in RE is

$$
\mu \frac{d I}{d \tau}=I-J
$$

grey atmosphere

- \rightarrow formal solution

$$
J(\tau)=\Lambda_{\tau}[S(t)]=\frac{1}{2} \int_{0}^{\infty} E_{1}(|t-\tau|) J(t) d t
$$

- Milne's Equation
- solution will automatically satisfy the grey RTE and the RE condition

grey atmosphere

- if we introduce LTE

$$
S_{\nu}=B_{\nu}
$$

- \rightarrow from the RE condition

$$
J(\tau)=S(\tau)=B(T(\tau))=\frac{\sigma}{\pi} T^{4}(\tau)
$$

- \rightarrow solution of grey RTE associates a temperature structure with the RE condition!

grey atmosphere

- integrating the RTE over $\mu \rightarrow$

$$
\frac{d H}{d \tau}=J-S=J-J=0
$$

- first moment $\left(1 / 2 \int \mu f(\mu) d \mu\right)$ of the RTE:

$$
2 \frac{d}{d \tau} \int \mu^{2} I d \mu=\int \mu I d \mu-\int \mu S d \mu=2 H-S \int \mu d \mu=2 H
$$

- so that

$$
\frac{d K}{d \tau}=H=\text { const. }
$$

grey atmosphere

- with the exact integral

$$
K(\tau)=H \tau+\text { const. }=\frac{1}{4} F \tau+c
$$

grey atmosphere

- A relation between J and K follows from the Eddington relation

$$
J \rightarrow 3 K(\tau \rightarrow \infty)
$$

- very good at large τ !
- with

$$
K(\tau) \rightarrow \frac{1}{4} F \tau(\tau \rightarrow \infty)
$$

we have

$$
J(\tau) \rightarrow \frac{3}{4} F \tau(\tau \rightarrow \infty)
$$

- at large $\tau, J(\tau)$ will be linear in τ.

grey atmosphere

- at small $\tau: J(\tau)$ will deviate from this!
- \rightarrow explicitly split out linear part:

$$
J(\tau)=\frac{3}{4}(\tau+q(\tau)) F
$$

where $q(\tau)$ is the Hopf-function

grey atmosphere

- $q(\tau)$ at large τ

$$
0=\lim _{\tau \rightarrow \infty}\left(\frac{1}{3} J(\tau)-K(\tau)\right)=\frac{1}{4} F \lim _{\tau \rightarrow \infty}(\tau+q(\tau)-\tau-c)
$$

- therefore

$$
q(\infty)=c
$$

- so that

$$
K(\tau)=\frac{1}{4}(\tau+q(\infty)) F
$$

grey atmosphere

- the solution of the grey problem is now reduced to finding $q(\tau)$
- insert

$$
J(\tau)=\frac{3}{4}(\tau+q(\tau)) F
$$

into the formal solution

$$
J(\tau)=\frac{1}{2} \int_{0}^{\infty} E_{1}(|t-\tau|) J(t) d t
$$

grey atmosphere

- this gives

$$
\tau+q(\tau)=\frac{1}{2} \int_{0}^{\infty} E_{1}(|t-\tau|)(\tau+q(\tau)) d t
$$

- and for $T(\tau)$ we have

$$
T^{4}(\tau)=\frac{3}{4} T_{\mathrm{eff}}^{4}(\tau+q(\tau))
$$

Mean opacities

- before going through the trouble to find exact and approximate solutions, let's look into connections between grey and non-grey cases
- it is possible to reduce a non-grey to a grey problem
- compare moment equations

$$
\begin{aligned}
\mu \frac{d l_{\nu}}{d z} & =\chi_{\nu}\left(S_{\nu}-I_{\nu}\right) \\
\mu \frac{d l}{d z} & =\chi(S-I)
\end{aligned}
$$

Mean opacities

$$
\begin{aligned}
\frac{d H_{\nu}}{d z} & =\chi_{\nu}\left(S_{\nu}-J_{\nu}\right) \\
\frac{d H}{d z} & =\chi(S-J)
\end{aligned}
$$

$$
\begin{aligned}
\frac{d K_{\nu}}{d z} & =-\chi_{\nu} H_{\nu} \\
\frac{d K}{d z} & =-\chi H
\end{aligned}
$$

flux weighted mean

- try to find mean opacity $\bar{\chi}$ so that

$$
\frac{d K_{\nu}}{d z}=-\chi_{\nu} H_{\nu}
$$

assumes the form

$$
\frac{d K}{d z}=-\bar{\chi} H
$$

when integrated over ν

- in that case,

$$
K(\bar{\tau})=H \bar{\tau}+c
$$

will be exact also in the non-grey case!
flux weighted mean

- integrate

$$
\frac{d K_{\nu}}{d z}=-\chi_{\nu} H_{\nu}
$$

over $\nu \rightarrow$

$$
-\int_{0}^{\infty} \frac{d K_{\nu}}{d z} d \nu=-\frac{d K}{d z}=\int_{0}^{\infty} \chi_{\nu} H_{\nu} d \nu=\bar{\chi}_{F} H
$$

flux weighted mean

- which leads to the definition of the flux weighted mean opacity

$$
\bar{\chi}_{F}=\frac{\int_{0}^{\infty} \chi_{\nu} H_{\nu} d \nu}{H}
$$

- and

$$
\frac{d K}{d z}=-\bar{\chi}_{F} H
$$

flux weighted mean

- problems:

1. we need to know H_{ν} to compute $\bar{\chi}_{F}$
2. the other mono-chromatic eqs. do not transfer into their grey counterparts

- but: it recovers the correct value of the radiation pressure $P_{\mathrm{rad}}=(4 \pi / c) K$

flux weighted mean

- therefore it also recovers the correct radiation force

$$
\frac{d P_{\mathrm{rad}}}{d z}=\frac{1}{\bar{\chi}_{F}} \frac{d P_{\mathrm{rad}}}{d \bar{\tau}}=\frac{4 \pi}{c \chi_{F}} \int_{0}^{\infty} \chi_{\nu} H_{\nu} d \nu=\frac{4 \pi}{c} H=\frac{\sigma}{c} T_{\mathrm{eff}}^{4}
$$

- this gives a simple expression for $d P_{\mathrm{rad}} / d z$ if $\bar{\chi}_{F}$ is known.

Rosseland mean

- construct average so that correct value of frequency integrated flux is recovered

$$
H=\int_{0}^{\infty} H_{\nu} d \nu=-\int_{0}^{\infty} \frac{1}{\chi_{\nu}} \frac{d K_{\nu}}{d z} d \nu \equiv-\frac{1}{\bar{\chi}} \frac{d K}{d z}
$$

- therefore

$$
\frac{1}{\bar{\chi}}=\frac{\int_{0}^{\infty} \frac{1}{\chi_{\nu}} \frac{d K_{\nu}}{d z} d \nu}{\int_{0}^{\infty} \frac{d K_{\nu}}{d z} d \nu}
$$

Rosseland mean

- at large τ we must have

$$
K_{\nu} \rightarrow \frac{1}{3} J_{\nu}
$$

and

$$
J_{\nu} \rightarrow B_{\nu}
$$

so that we define

$$
\frac{1}{\bar{\chi}_{R}}=\frac{\int_{0}^{\infty} \frac{1}{\chi_{\nu}} \frac{d B_{\nu}}{d T} d \nu}{\int_{0}^{\infty} \frac{d B_{\nu}}{d T} d \nu}
$$

- Rosseland mean opacity

Rosseland mean

- these assumptions are the same as made earlier for the diffusion approximation!
$\rightarrow \rightarrow$

$$
H_{\nu}=-\frac{1}{3} \frac{1}{\chi_{\nu}} \frac{d B}{d T} \frac{d T}{d z}
$$

is transformed into

$$
H=-\frac{1}{3} \frac{1}{\bar{\chi}_{R}} \frac{d B}{d T} \frac{d T}{d z}
$$

Rosseland mean

- at large τ we have

$$
T^{4}\left(\bar{\tau}_{R}\right)=\frac{3}{4} T_{\mathrm{eff}}^{4}\left(\bar{\tau}_{R}+q\left(\bar{\tau}_{R}\right)\right)
$$

is a good approximation even in the non-grey case!

- diffusion approximation breaks down closer to the surface!
- \rightarrow flux conservation not guaranteed if Rosseland mean is used close to surface!

Planck \& absorption means

- defined to yield correct value of the thermal emission:

$$
\int \kappa_{\nu} B_{\nu} d \nu=\bar{\kappa}_{P} \int B_{\nu} d \nu=\frac{\sigma}{\pi} T^{4} \bar{\kappa}_{P}
$$

- Planck absorption mean

Planck \& absorption means

- analogous: define absorption mean

$$
\bar{\kappa}_{J} J=\int \kappa_{\nu} J_{\nu} d \nu
$$

which gives correct total amount of energy absorbed in the medium

- both means do not lead to further simplifications in the RTE but are useful in rad-hydro calculations

approximate grey solution

- for $\tau \gg 1$ we have

$$
J(\tau)=3 K(\tau)
$$

- this relation is valid for some other special cases:
- look at $\tau=0$
- $I(\mu \leq 0)=0$
- $I(\mu \geq 0)=I_{0}=$ const.
approximate grey solution
- with this

$$
\begin{aligned}
J & =\frac{1}{2} \int I d \mu=\frac{1}{2} I_{0} \int_{0}^{1} d \mu=\frac{1}{2} I_{0} \\
K & =\frac{1}{2} \int \mu^{2} I d \mu=\frac{1}{2} I_{0} \int_{0}^{1} \mu^{2} d \mu=\frac{1}{6} I_{0}
\end{aligned}
$$

$$
\rightarrow J=3 K
$$

approximate grey solution

- also two-stream approximation:
- $I(\mu \leq 0)=I_{-}$
- $I(\mu \geq 0)=I_{+}=$const.
- with this

$$
\begin{aligned}
& J=\frac{1}{2} I_{+} \int_{0}^{1} d \mu+\frac{1}{2} I_{-} \int_{-1}^{0} d \mu=\frac{1}{2}\left(I_{+}+I_{-}\right) \\
& K=\frac{1}{2} I_{+} \int_{0}^{1} \mu^{2} d \mu+\frac{1}{2} I_{-} \int_{-1}^{0} \mu^{2} d \mu=\frac{1}{6}\left(I_{+}+I_{-}\right)
\end{aligned}
$$

$\rightarrow \rightarrow J=3 K$

approximate grey solution

- Eddington \rightarrow assume that $J=3 K$ everywhere!
$\rightarrow \rightarrow$

$$
J(\tau)=\frac{3}{4} F \tau+c^{\prime}
$$

- to compute c^{\prime}, insert this into the FS for $F(0)$:

$$
\begin{aligned}
F(0) & =2 \int_{0}^{\infty} E_{2}(t)\left\{\frac{3}{4} F \tau+c^{\prime}\right\} d t \\
& =2 c^{\prime} E_{3}(0)+\frac{3}{4} F\left\{\frac{4}{3}-2 E_{4}(0)\right\}
\end{aligned}
$$

approximate grey solution

- set $F(0)=F_{0}$ to the target flux
- for the exponential integrals we have the relation

$$
E_{n}(0)=\frac{1}{n-1}
$$

so that $c^{\prime}=F_{0} / 2$

- therefore

$$
\begin{aligned}
J(\tau) & =\frac{3}{4} F_{0}\left(\tau+\frac{2}{3}\right) \\
T^{4}(\tau) & =\frac{3}{4} T_{\text {eff }}^{4}\left(\tau+\frac{2}{3}\right)
\end{aligned}
$$

approximate grey solution

- boundary temperature

$$
T(0)=\left(\frac{1}{2}\right)^{1 / 4} T_{\mathrm{eff}} \approx 0.841 T_{\mathrm{eff}}
$$

agrees well with exact value

$$
T(0)=\left(\frac{\sqrt{3}}{4}\right)^{1 / 4} T_{\mathrm{eff}} \approx 0.84114 T_{\mathrm{eff}}
$$

limb darkening

- insert $J(\tau)$ from the Eddington approx into the FS to compute angular dependence of I at $\tau=0$

$$
\begin{aligned}
I(0, \mu) & =\frac{3}{4} F_{0} \int_{0}^{\infty}\left(\tau+\frac{2}{3}\right) \frac{\exp (-\tau / \mu)}{\mu} d t \\
& =\frac{3}{4} F_{0}\left(\mu+\frac{2}{3}\right)
\end{aligned}
$$

- specific form of Eddington-Barbier relation!
- limb darkening law: ratio

$$
\frac{I(0, \mu)}{I(0, \mu=1)}
$$

limb darkening

- in the Eddington approx:

$$
\frac{I(0, \mu)}{I(0, \mu=1)}=\frac{3}{5}\left(\mu+\frac{2}{3}\right)
$$

- so that

$$
\frac{I(0,0)}{l(0,1)}=\frac{2}{5}=0.4
$$

- \rightarrow good agreement with measured value for the Sun!

exact solution

- basic idea:
- write RTE in the form

$$
\mu \frac{d I}{d \tau}=I-\frac{1}{2} \int I d \mu
$$

- approximate $\int d \mu$ by quadrature sum

$$
\frac{1}{2} \int I d \mu=\sum_{-n}^{n} a_{j} l\left(\mu_{j}\right)
$$

exact solution

- insert this into the RTE:

$$
\mu_{i} \frac{d l_{i}}{d \tau}=I_{i}-\frac{1}{2} \sum_{-n}^{n} a_{j} l\left(\mu_{j}\right)
$$

this is a linear, first order ODE, solutions of the form

$$
I\left(\mu_{i}\right)=g_{i} \exp \left(-k_{i} \tau\right)
$$

are good guesses for test solutions

exact solution

- inserting the test functions into the RTE:

$$
g_{i}\left(1+k_{i} \mu_{i}\right)=\frac{1}{2} \sum_{-n}^{n} a_{j} g_{j}=\text { const }=c
$$

- so that

$$
g_{i}=\frac{c}{1+k_{i} \mu_{i}}
$$

- inserting that back into the RTE
\rightarrow characteristic equation

$$
\frac{1}{2} \sum_{-n}^{n} \frac{a_{j}}{1+k_{j} \mu_{j}}=1
$$

exact solution

- solving this and computing its roots gives
\rightarrow general solution of the RTE

$$
\begin{aligned}
I_{i}(\tau)= & b\left\{\sum_{\alpha=1}^{n} L_{\alpha}\left(1+k_{\alpha} \mu_{i}\right)^{-1} \exp \left(-k_{\alpha} \tau\right)\right. \\
& \left.+\sum_{\alpha=1}^{n-1} L_{-\alpha}\left(1-k_{\alpha} \mu_{i}\right)^{-1} \exp \left(+k_{\alpha} \tau\right)\right\}
\end{aligned}
$$

exact solution

- particular solution:

$$
I_{i}(\tau)=b\left(\tau+Q+\mu_{i}\right)
$$

- \rightarrow complete solution

$$
\begin{aligned}
I_{i}(\tau)= & b\left\{\tau+Q+\mu_{i}+\sum_{\alpha=1}^{n} L_{\alpha}\left(1+k_{\alpha} \mu_{i}\right)^{-1} \exp \left(-k_{\alpha} \tau\right)\right. \\
& \left.+\sum_{\alpha=1}^{n-1} L_{-\alpha}\left(1-k_{\alpha} \mu_{i}\right)^{-1} \exp \left(+k_{\alpha} \tau\right)\right\}
\end{aligned}
$$

- with $2 n$ constants b, Q, L_{α} and $L_{-\alpha}$

exact solution

- constants can be computed by applying the boundary conditions
$\rightarrow L_{-\alpha}=0$ (inner BC)
- remaining constants \rightarrow linear system

$$
Q-\mu_{i}+\sum_{\alpha=1}^{n-1} \frac{L_{\alpha}}{1-k_{\alpha} \mu_{i}}=0
$$

- discrete ordinate representation of the Hopf function:

$$
q(\tau)=Q+\sum_{\alpha=1}^{n-1} L_{\alpha} \exp \left(-k_{\alpha} \tau\right)
$$

exact solution

- For $n=1$ and 2 we get for q :
- $n=1$

$$
q(\tau)=\frac{1}{\sqrt{3}}
$$

- $n=2$

$$
q(\tau)=0.694025-0.116675 \exp (-1.97203 \tau)
$$

- exact solution can be obtained by $n \rightarrow \infty$

