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Topics

I The grey atmosphere
I Milne’s equation
I opacity means
I approximate solution
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grey atmosphere

I grey approximation
I assume wavelength independent extinction coefficient

χν = χ = const. in ν

I not really realistic but
1. non-grey problem can be reduced to gray case with

opacity averages
2. useful baseline for analyses of non-grey problems
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grey atmosphere

I consider grey atmosphere in RE!
I pp RTE

µ
dIν
dτν

= Iν − Sν

I reduces in the grey approximation to

µ
dI

dτ
= I − S
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grey atmosphere

I where

I =

∫ ∞
0

Iν dν

τ =

∫ ∞
0

τν dν

and so on
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grey atmosphere

I the condition of RE is∫ ∞
0

χνSν dν =

∫ ∞
0

χνJν dν

I this implies in the grey atmosphere

S = J

I → the grey RTE in RE is

µ
dI

dτ
= I − J

6 / 43



grey atmosphere

I → formal solution

J(τ) = Λτ [S(t)] =
1
2

∫ ∞
0

E1(|t − τ |)J(t) dt

I Milne’s Equation
I solution will automatically satisfy the grey RTE and the

RE condition

7 / 43



grey atmosphere

I if we introduce LTE
Sν = Bν

I → from the RE condition

J(τ) = S(τ) = B(T (τ)) =
σ

π
T 4(τ)

I → solution of grey RTE associates a temperature
structure with the RE condition!
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grey atmosphere

I integrating the RTE over µ→

dH

dτ
= J − S = J − J = 0

I first moment (1/2
∫
µf (µ) dµ) of the RTE:

2
d

dτ

∫
µ2I dµ =

∫
µI dµ−

∫
µS dµ = 2H−S

∫
µ dµ = 2H

I so that
dK

dτ
= H = const.
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grey atmosphere

I with the exact integral

K (τ) = Hτ + const. =
1
4
F τ + c
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grey atmosphere

I A relation between J and K follows from the Eddington
relation

J → 3K (τ →∞)

I very good at large τ !
I with

K (τ)→ 1
4
F τ (τ →∞)

we have
J(τ)→ 3

4
F τ (τ →∞)

I at large τ , J(τ) will be linear in τ .
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grey atmosphere

I at small τ : J(τ) will deviate from this!
I → explicitly split out linear part:

J(τ) =
3
4

(τ + q(τ))F

where q(τ) is the Hopf-function
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grey atmosphere

I q(τ) at large τ

0 = lim
τ→∞

(
1
3
J(τ)− K (τ)

)
=

1
4
F lim
τ→∞

(τ + q(τ)− τ − c)

I therefore
q(∞) = c

I so that
K (τ) =

1
4

(τ + q(∞))F
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grey atmosphere

I the solution of the grey problem is now reduced to finding
q(τ)

I insert
J(τ) =

3
4

(τ + q(τ))F

into the formal solution

J(τ) =
1
2

∫ ∞
0

E1(|t − τ |)J(t) dt
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grey atmosphere

I this gives

τ + q(τ) =
1
2

∫ ∞
0

E1(|t − τ |)(τ + q(τ)) dt

I and for T (τ) we have

T 4(τ) =
3
4
T 4
eff(τ + q(τ))
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Mean opacities

I before going through the trouble to find exact and
approximate solutions, let’s look into connections between
grey and non-grey cases

I it is possible to reduce a non-grey to a grey problem
I compare moment equations

µ
dIν
dz

= χν(Sν − Iν)

µ
dI

dz
= χ(S − I )
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Mean opacities

dHν
dz

= χν(Sν − Jν)

dH

dz
= χ(S − J)

dKν
dz

= −χνHν
dK

dz
= −χH
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flux weighted mean

I try to find mean opacity χ̄ so that

dKν
dz

= −χνHν

assumes the form
dK

dz
= −χ̄H

when integrated over ν
I in that case,

K (τ̄) = H τ̄ + c

will be exact also in the non-grey case!
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flux weighted mean

I integrate
dKν
dz

= −χνHν
over ν →

−
∫ ∞

0

dKν
dz

dν = −dK

dz
=

∫ ∞
0

χνHν dν = χ̄FH
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flux weighted mean

I which leads to the definition of the flux weighted mean
opacity

χ̄F =

∫∞
0 χνHν dν

H
I and

dK

dz
= −χ̄FH

20 / 43



flux weighted mean

I problems:
1. we need to know Hν to compute χ̄F

2. the other mono-chromatic eqs. do not transfer into their
grey counterparts

I but: it recovers the correct value of the radiation pressure
Prad = (4π/c)K
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flux weighted mean

I therefore it also recovers the correct radiation force
dPrad

dz
=

1
χ̄F

dPrad

d τ̄
=

4π
cχF

∫ ∞
0

χνHν dν =
4π
c
H =

σ

c
T 4
eff

I this gives a simple expression for dPrad/dz if χ̄F is known.
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Rosseland mean

I construct average so that correct value of frequency
integrated flux is recovered

H =

∫ ∞
0

Hν dν = −
∫ ∞

0

1
χν

dKν
dz

dν ≡ − 1
χ̄

dK

dz

I therefore
1
χ̄

=

∫∞
0

1
χν

dKν

dz
dν∫∞

0
dKν

dz
dν
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Rosseland mean

I at large τ we must have

Kν →
1
3
Jν

and
Jν → Bν

so that we define

1
χ̄R

=

∫∞
0

1
χν

dBν

dT
dν∫∞

0
dBν

dT
dν

I Rosseland mean opacity
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Rosseland mean

I these assumptions are the same as made earlier for the
diffusion approximation!

I →
Hν = −1

3
1
χν

dB

dT

dT

dz

is transformed into

H = −1
3

1
χ̄R

dB

dT

dT

dz
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Rosseland mean

I at large τ we have

T 4(τ̄R) =
3
4
T 4
eff(τ̄R + q(τ̄R))

is a good approximation even in the non-grey case!
I diffusion approximation breaks down closer to the surface!
I → flux conservation not guaranteed if Rosseland mean is

used close to surface!
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Planck & absorption means

I defined to yield correct value of the thermal emission:∫
κνBν dν = κ̄P

∫
Bν dν =

σ

π
T 4κ̄P

I Planck absorption mean
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Planck & absorption means

I analogous: define absorption mean

κ̄JJ =

∫
κνJν dν

which gives correct total amount of energy absorbed in
the medium

I both means do not lead to further simplifications in the
RTE but are useful in rad-hydro calculations
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approximate grey solution

I for τ � 1 we have

J(τ) = 3K (τ)

I this relation is valid for some other special cases:
I look at τ = 0
I I (µ ≤ 0) = 0
I I (µ ≥ 0) = I0 = const.
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approximate grey solution

I with this

J =
1
2

∫
I dµ =

1
2
I0

∫ 1

0
dµ =

1
2
I0

K =
1
2

∫
µ2I dµ =

1
2
I0

∫ 1

0
µ2 dµ =

1
6
I0

I → J = 3K
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approximate grey solution

I also two-stream approximation:
I I (µ ≤ 0) = I−
I I (µ ≥ 0) = I+ = const.
I with this

J =
1
2
I+

∫ 1

0
dµ +

1
2
I−

∫ 0

−1
dµ =

1
2

(I+ + I−)

K =
1
2
I+

∫ 1

0
µ2 dµ +

1
2
I−

∫ 0

−1
µ2 dµ =

1
6

(I+ + I−)

I → J = 3K
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approximate grey solution

I Eddington → assume that J = 3K everywhere!
I →

J(τ) =
3
4
F τ + c ′

I to compute c ′, insert this into the FS for F (0):

F (0) = 2
∫ ∞

0
E2(t)

{
3
4
F τ + c ′

}
dt

= 2c ′E3(0) +
3
4
F

{
4
3
− 2E4(0)

}
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approximate grey solution

I set F (0) = F0 to the target flux
I for the exponential integrals we have the relation

En(0) =
1

n − 1

so that c ′ = F0/2
I therefore

J(τ) =
3
4
F0 (τ +

2
3

)

T 4(τ) =
3
4
T 4
eff (τ +

2
3

)
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approximate grey solution

I boundary temperature

T (0) =

(
1
2

)1/4

Teff ≈ 0.841Teff

agrees well with exact value

T (0) =

(√
3
4

)1/4

Teff ≈ 0.84114Teff
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limb darkening

I insert J(τ) from the Eddington approx into the FS to
compute angular dependence of I at τ = 0

I (0, µ) =
3
4
F0

∫ ∞
0

(
τ +

2
3

)
exp(−τ/µ)

µ
dt

=
3
4
F0

(
µ +

2
3

)
I specific form of Eddington-Barbier relation!
I limb darkening law: ratio

I (0, µ)

I (0, µ = 1)
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limb darkening

I in the Eddington approx:

I (0, µ)

I (0, µ = 1)
=

3
5

(
µ +

2
3

)
I so that

I (0, 0)

I (0, 1)
=

2
5

= 0.4

I → good agreement with measured value for the Sun!
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exact solution

I basic idea:
I write RTE in the form

µ
dI

dτ
= I − 1

2

∫
I dµ

I approximate
∫
dµ by quadrature sum

1
2

∫
I dµ =

n∑
−n

aj I (µj)
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exact solution

I insert this into the RTE:

µi
dIi
dτ

= Ii −
1
2

n∑
−n

aj I (µj)

this is a linear, first order ODE, solutions of the form

I (µi) = gi exp(−kiτ)

are good guesses for test solutions
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exact solution

I inserting the test functions into the RTE:

gi(1 + kiµi) =
1
2

n∑
−n

ajgj = const = c

I so that
gi =

c

1 + kiµi

I inserting that back into the RTE
→ characteristic equation

1
2

n∑
−n

aj
1 + kjµj

= 1
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exact solution

I solving this and computing its roots gives
→ general solution of the RTE

Ii(τ) = b

{
n∑

α=1

Lα (1 + kαµi)
−1 exp(−kατ)

+
n−1∑
α=1

L−α (1− kαµi)
−1 exp(+kατ)

}
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exact solution

I particular solution:

Ii(τ) = b(τ + Q + µi)

I → complete solution

Ii(τ) = b

{
τ + Q + µi +

n∑
α=1

Lα (1 + kαµi)
−1 exp(−kατ)

+
n−1∑
α=1

L−α (1− kαµi)
−1 exp(+kατ)

}

I with 2n constants b, Q, Lα and L−α
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exact solution

I constants can be computed by applying the boundary
conditions

I → L−α = 0 (inner BC)
I remaining constants → linear system

Q − µi +
n−1∑
α=1

Lα
1− kαµi

= 0

I discrete ordinate representation of the Hopf function:

q(τ) = Q +
n−1∑
α=1

Lα exp(−kατ)
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exact solution

I For n = 1 and 2 we get for q:
I n = 1

q(τ) =
1√
3

I n = 2

q(τ) = 0.694025− 0.116675 exp(−1.97203τ)

I exact solution can be obtained by n→∞
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