Stellar/Planetary Atmospheres
 Part 02: equation of transfer

Peter Hauschildt
yeti@hs.uni-hamburg.de

Hamburger Sternwarte
Gojenbergsweg 112
21029 Hamburg
24. April 2018

Topics

- The equation of radiative transfer
- kinetic form
- source function
- with scattering
- RTE in different geometries
- RTE in moving atmospheres
- optical depth in depth
- formal solution of the RTE
- Eddington-Barbier relation
- Schwarzschild-Milne equations
- radiative equilibrium
- diffusion approximation
- Outline

1. introduce 'kinetic equation' for particles
2. look at the corresponding equation of photons
3. rewrite it into the conventional form

kinetic equation for particles

$$
\frac{\partial \Phi}{\partial t}=-\nabla^{\mu} \cdot(\vec{x} \Phi)+\left(\frac{\partial \Phi}{\partial t}\right)_{\mathrm{coll}}
$$

- Φ : particle distribution function
- $\nabla^{\mu} \cdot(\vec{x} \Phi)$: divergence of the phase space particle flow
- Gauss' theorem $\rightarrow=$ net flow of particles through a phase space volume element

kinetic equation for particles

$$
\begin{aligned}
\nabla^{\mu} \cdot(\vec{x} \phi) & =\frac{\partial(\vec{r} \phi)}{\partial \vec{r}}+\frac{\partial(\vec{v} \phi)}{\partial \vec{v}} \\
& =\frac{\partial(\vec{v} \phi)}{\partial \vec{r}}+\frac{\partial}{\partial \vec{v}}\left(\frac{\vec{k}}{m} \phi\right) \\
& =\vec{v} \cdot \frac{\partial \Phi}{\partial \vec{r}}+\frac{\vec{k}}{m} \cdot \frac{\partial \phi}{\partial \vec{v}}
\end{aligned}
$$

- \vec{K} : force
- assumes that \vec{K} is of the form

$$
\vec{K}=m \vec{g}+q \vec{E}+\frac{q}{c} \vec{v} \times \vec{B}
$$

kinetic equation for particles

- with this we get

$$
\frac{\partial \Phi}{\partial t}+\vec{v} \cdot \frac{\partial \Phi}{\partial \vec{r}}+\frac{\vec{K}}{m} \cdot \frac{\partial \Phi}{\partial \vec{v}}=\left(\frac{\partial \Phi}{\partial t}\right)_{\mathrm{coll}}
$$

- $\left(\frac{\partial \Phi}{\partial t}\right)_{\text {coll }}$: collisional term
- strictly speaking: defined by the above equation

kinetic equation for particles

- Properties of $\left(\frac{\partial \Phi}{\partial t}\right)_{\text {coll }}$:

1. depends only on one-particle distribution function, no correlation effects
2. depends only on instantaneous values of Φ and $\partial \Phi / \partial t$, not on the history of the system (Markov-process)
3. leads irreversibly to TE

- note: particles interact also through the force term!

kinetic equation for photons

$$
\frac{\partial \Phi}{\partial t}+c \vec{n} \cdot \frac{\partial \Phi}{\partial \vec{r}}=\left(\frac{\partial \Phi}{\partial t}\right)_{+}-\left(\frac{\partial \Phi}{\partial t}\right)_{-}
$$

- $\left(\frac{\partial \Phi}{\partial t}\right)_{+}:$creation of photons
- $\left(\frac{\partial \Phi}{\partial t}\right)_{-}$: destruction of photons
- main difference to particles: no force term

kinetic equation for photons

- with $\Phi=c^{2} /\left(h^{4} \nu^{3}\right) I_{\nu} \rightarrow$

$$
\frac{1}{c} \frac{\partial I_{\nu}}{\partial t}+\vec{n} \cdot \nabla I_{\nu}=\frac{1}{c}\left(\frac{\partial I_{\nu}}{\partial t}\right)_{+}-\frac{1}{c}\left(\frac{\partial I_{\nu}}{\partial t}\right)_{-}
$$

- photon creation usually written as

$$
e_{\nu}=\frac{1}{c}\left(\frac{\partial I_{\nu}}{\partial t}\right)_{+}
$$

- destruction is (here) always $\propto I_{\nu} \rightarrow$

$$
a_{\nu} I_{\nu}=\frac{1}{c}\left(\frac{\partial I_{\nu}}{\partial t}\right)_{-}
$$

kinetic equation for photons

- with

$$
\frac{1}{c} \frac{\partial I_{\nu}}{\partial t} d \nu d \Omega=h \nu \frac{\partial \Phi}{\partial t} d^{3} p
$$

we have:

- $e_{\nu} d \nu d \Omega: h \nu$ times the creation rate of photons in $(\nu, d \nu, \vec{n}, d \Omega)$
- $a_{\nu} l_{\nu} d \nu d \Omega$: $h \nu$ times the destruction rate of photons in $(\nu, d \nu, \vec{n}, d \Omega)$

absorption/emission of photons

- photon creation is always composed of spontaneous $\left(\epsilon_{\nu}\right)$ and stimulated parts:

$$
e_{\nu}=\left(1+\frac{c^{2}}{2 h \nu^{3}} I_{\nu}\right) \epsilon_{\nu}
$$

absorption/emission of photons

- thus define

$$
\begin{aligned}
e_{\nu}-a_{\nu} I_{\nu} & =\epsilon_{\nu}+\epsilon_{\nu} \frac{c^{2}}{2 h \nu^{3}} I_{\nu}-a_{\nu} I_{\nu} \\
& =\epsilon_{\nu}-\left(a_{\nu}-\epsilon_{\nu} \frac{c^{2}}{2 h \nu^{3}}\right) I_{\nu} \\
& \equiv \epsilon_{\nu}-\chi_{\nu} I_{\nu}
\end{aligned}
$$

- ϵ_{ν} : emission coefficient
- χ_{ν} : extinction coefficient
- $e_{\nu} \& a_{\nu}$ describe the true physical creation and destruction of photons (QED)
- $\epsilon_{\nu} \& \chi_{\nu}$ account for the net rate of change of photons

The source function

- the ratio $\epsilon_{\nu} / \chi_{\nu}$ is called the source function

$$
S_{\nu}=\frac{\epsilon_{\nu}}{\chi_{\nu}}
$$

- translated from 'Ergiebigkeit'
- re-translated as 'Quellfunktion'

The RTE

- with this we can write the radiative transfer equation (RTE) in its usual form:

$$
\begin{aligned}
\frac{1}{c} \frac{\partial I_{\nu}}{\partial t}+\vec{n} \cdot \nabla I_{\nu} & =\epsilon_{\nu}-\chi_{\nu} I_{\nu} \\
& =\chi_{\nu}\left(S_{\nu}-I_{\nu}\right)
\end{aligned}
$$

S_{ν} in TE

- In TE we have
- $I_{\nu}=B_{\nu}$
- $\partial B_{\nu} / \partial t=0$
- $\nabla I_{\nu}=\nabla B_{\nu}=0$
- therefore $\epsilon_{\nu}=\chi_{\nu} I_{\nu}=\chi_{\nu} B_{\nu}$
- so that in TE

$$
S_{\nu}=B_{\nu}
$$

- frequently used in LTE, too!

$S_{\nu} \&$ scattering

- stellar/planetary atmosphere gas will absorb and scatter photons
- for simplicity: isotropic, coherent scattering
- extinction given by

$$
\chi_{\nu}=\kappa_{\nu}+\sigma_{\nu}
$$

- κ_{ν} : true absorption (destruction)
- σ_{ν} : scattering
- absorptive processes lead in TE to equivalent emission \rightarrow

$$
\epsilon_{\nu}(\text { thermal })=\kappa_{\nu} B_{\nu}
$$

$S_{\nu} \&$ scattering

- for scattering processes we have

$$
\begin{aligned}
\epsilon_{\nu}(\text { scattering }) & =\sigma_{\nu} \int p\left(\vec{n}, \overrightarrow{n^{\prime}}\right) I_{\nu} d \Omega \\
& =\frac{\sigma_{\nu}}{4 \pi} \int I_{\nu} d \Omega \\
& =\sigma_{\nu} \frac{1}{2} \int I_{\nu} d \mu \quad(1 D) \\
& =\sigma_{\nu} J_{\nu}
\end{aligned}
$$

with

- p : phase function (isotropic by previous assumption)

$S_{\nu} \&$ scattering

- so that we have

$$
S_{\nu}=(1-\epsilon) J_{\nu}+\epsilon B_{\nu}
$$

with the definition of the photon destruction probability

$$
\epsilon=\frac{\kappa_{\nu}}{\kappa_{\nu}+\sigma_{\nu}}
$$

RTE in different geometries

- Cartesian coordinates (ν index omitted)

$$
\frac{1}{c} \frac{\partial I}{\partial t}+\vec{n} \cdot \nabla I=\chi(S-I)
$$

- translate $\vec{n} \cdot \nabla$ to obtain RTE in different geometries
- simple cases: time independent

RTE in different geometries

- plane parallel (slab) geometry:

$$
\mu \frac{d l}{d z}=\chi(S-I)
$$

RTE in different geometries

- spherical geometry:

$$
\mu \frac{\partial I}{\partial r}+\frac{1-\mu^{2}}{r} \frac{\partial I}{\partial \mu}=\chi(S
$$

RTE in different geometries

- 1D, spherical, relativistic (Lagrange frame):

$$
e \frac{\partial I}{\partial r}+\frac{\partial}{\partial \mu}(f I)+g \frac{\partial}{\partial \lambda}(\lambda I)+h I=\eta-\chi I
$$

with

$$
\begin{aligned}
e(r, \mu) & =\gamma(\mu+\beta) \\
f(r, \mu) & =\gamma\left(1-\mu^{2}\right)\left[\frac{1+\beta \mu}{r}-\gamma^{2}(\mu+\beta) \frac{\partial \beta}{\partial r}\right] \\
g(r, \mu) & =\gamma\left[\frac{\beta\left(1-\mu^{2}\right)}{r}+\gamma^{2} \mu(\mu+\beta) \frac{\partial \beta}{\partial r}\right] \\
h(r, \mu) & =\gamma\left[\frac{\beta\left(1-\mu^{2}\right)}{r}+\gamma^{2}\left(1+\mu^{2}+2 \beta \mu\right) \frac{\partial \beta}{\partial r}\right]
\end{aligned}
$$

RTE in different geometries

- I $r, \mu, \lambda)$: specific intensity scaled by r^{2},
- r : radial coordinate,
- μ : cosine of the direction angle, $\mu=\cos \phi$
- v : velocity, $\beta=v / c, \gamma^{2}=1 /\left(1-\beta^{2}\right)$,
- $\chi(r, \lambda)$: extinction coefficient, $\chi=\kappa+\sigma_{e}+\kappa_{l} \varphi(\lambda)$
- $\eta(r, \lambda)$: emissivity.

RTE in different geometries

Example for $\eta(r, \lambda)$

$$
\eta=\kappa B_{\lambda}(T)+\sigma_{e} J(\lambda)+\kappa_{l} \varphi(\lambda) \int_{0}^{\infty} \varphi(\lambda) J(\lambda) d \lambda
$$

with

$$
J(\lambda)=\int_{-1}^{1} I(\lambda) d \mu
$$

- $\kappa B_{\lambda}(T)$: thermal emission
- $\sigma_{e} J(\lambda)$: electron scattering
- $\frac{\sigma}{2} \int_{0}^{\infty} \int_{-1}^{1} \varphi(\lambda) / d \mu d \lambda$: spectral line emissivity

The optical depth

- pp RTE:

$$
\mu \frac{d l}{d z}=\chi(S-I)
$$

- we define the optical depth τ by

$$
d \tau=-\chi d z
$$

- with this the RTE becomes

$$
\mu \frac{d l}{d \tau}=I-S
$$

- total optical depth between 2 points:

$$
\Delta \tau_{12}=-\int_{z 1}^{z 2} \chi\left(z^{\prime}\right) d z^{\prime}
$$

- $\Delta \tau \ll 1$: optically thin
- $\Delta \tau \gg 1$: optically thick

The optical depth

- along a path s the intensity varies according to

$$
d I=-\chi I d s+\eta d s
$$

- if $\eta=0, \chi=$ const. we have with $d \tau=\chi d s$

$$
d l=-l d \tau
$$

so that

$$
I(s)=I\left(s_{0}\right) \exp (-\tau)
$$

- $\Delta \tau=1$ is the e-folding optical depth of the intensity in pure extinction

Formal solution of the pp RTE

- PP RTE is a linear first order ODE with constant coefficients

$$
\mu \frac{d I}{d \tau}=I-S
$$

- integrating factor is $\exp (-\tau / \mu)$:

$$
\frac{d(/ \exp (-\tau / \mu))}{d \tau}=-\frac{S \exp (-\tau / \mu)}{\mu}
$$

- with this \rightarrow

$$
\left.I \exp \left(-\frac{\tau}{\mu}\right)\right|_{\tau_{1}} ^{\tau_{2}}=\int_{\tau_{1}}^{\tau_{2}} S(t) \exp \left(-\frac{t}{\mu}\right) \frac{d t}{\mu}
$$

Formal solution of the pp RTE

- \rightarrow formal solution

$$
\begin{aligned}
I\left(\tau_{1}, \mu\right)= & I\left(\tau_{2}, \mu\right) \exp \left(-\frac{\tau_{2}-\tau_{1}}{\mu}\right) \\
& +\frac{1}{\mu} \int_{\tau_{1}}^{\tau_{2}} S(t) \exp \left(-\frac{t-\tau_{1}}{\mu}\right) d t
\end{aligned}
$$

- formal because it is implicit in S :

$$
S=(1-\epsilon) J+\epsilon B
$$

Example: semi-infinite slab

- boundary conditions:

1. outer: $I(\tau=0, \mu \leq 0)=0$ no incident radiation
2. inner:

- finite $\tau_{\max }: I\left(\tau=\tau_{\max }, \mu \geq 0\right)=I_{\mathrm{bc}}^{+}$
- $\tau_{\max } \rightarrow \infty$:

$$
\lim _{\tau \rightarrow \infty} I(\tau, \mu \geq 0) \exp \left(-\frac{\tau}{\mu}\right)=0
$$

Example: semi-infinite slab

- for $\mu \geq 0$ we set $\tau_{1}=\tau, \tau_{2}=\infty \rightarrow$

$$
I(\tau, \mu \geq 0)=\int_{\tau}^{\infty} S(t) \exp \left(-\frac{t-\tau}{\mu}\right) \frac{d t}{\mu}
$$

- for $\mu \leq 0$ we set $\tau_{2}=0, I_{\mathrm{bc}}^{-}=0 \rightarrow$

$$
I(\tau, \mu \leq 0)=\int_{0}^{\tau} S(t) \exp \left(-\frac{t-\tau}{(-|\mu|)}\right) \frac{d t}{(-|\mu|)}
$$

- and for $\tau=0, \mu \geq 0$ (emerging radiation):

$$
I(0, \mu \geq 0)=\int_{0}^{\infty} S(t) \exp \left(-\frac{t}{\mu}\right) \frac{d t}{\mu}
$$

Eddington-Barbier relation

- linear $S(\tau)=S_{0}+S_{1} \tau \rightarrow$

$$
\begin{aligned}
I(0, \mu \geq 0)= & \int_{0}^{\infty} S(t) \exp \left(-\frac{t}{\mu}\right) \frac{d t}{\mu} \\
= & \frac{1}{\mu}\left[S_{0} \int_{0}^{\infty} \exp \left(-\frac{t}{\mu}\right) d t\right. \\
& \left.+S_{1} \int_{0}^{\infty} t \exp \left(-\frac{t}{\mu}\right) d t\right] \\
= & S_{0}+S_{1} \mu
\end{aligned}
$$

- \rightarrow Eddington-Barbier relation

$$
I(0, \mu \geq 0)=S_{0}+S_{1} \mu=S(\tau=\mu)
$$

Eddington-Barbier relation

- emergent intensity is characteristic of the value of S at $\Delta \tau=1$ along the path of the light ray!
- widely used in early analyses of stellar spectra
- not valid in reality

1. $S(\tau)$ is not linear
2. scattering $\rightarrow I$ contains contributions from larger (optical) depth range

Schwarzschild-Milne equations

- integrate FS over μ :

$$
\begin{aligned}
J(\tau)= & \frac{1}{2} \int_{-1}^{+1} I d \mu \\
= & \frac{1}{2}\left[\int_{0}^{1} d \mu \int_{\tau}^{\infty} S(t) \exp \left(-\frac{t-\tau}{\mu}\right) \frac{d t}{\mu}\right. \\
& \left.+\int_{-1}^{0} d \mu \int_{0}^{\tau} S(t) \exp \left(-\frac{\tau-t}{\mu}\right) \frac{d t}{(-|\mu|)}\right] \\
= & \frac{1}{2}\left\{\int_{\tau}^{\infty} S(t)\left[\int_{1}^{\infty} \frac{1}{w} \exp (-w(t-\tau)) d w\right] d t\right. \\
& \left.+\int_{0}^{\tau} S(t)\left[\int_{1}^{\infty} \frac{1}{w} \exp (-w(\tau-t)) d w\right] d t\right\}
\end{aligned}
$$

- with $w= \pm 1 / \mu$

Schwarzschild-Milne equations

- [...] is a standard form form of the $1^{\text {st }}$ exponential integral:

$$
E_{n}(x)=\int_{1}^{\infty} t^{-n} \exp (-x t) d t
$$

- using E_{1} we have

$$
\begin{aligned}
J(\tau) & =\frac{1}{2}\left\{\int_{\tau}^{\infty} E_{1}(t-\tau) S(t) d t+\int_{0}^{\tau} E_{1}(\tau-t) S(t) d t\right\} \\
& =\frac{1}{2} \int_{0}^{\infty} E_{1}(|t-\tau|) S(t) d t
\end{aligned}
$$

Schwarzschild-Milne equations

- fundamental importance for RT theory \rightarrow
- introduce operator notation

$$
\begin{aligned}
\Lambda_{\tau}[f(t)] & =\frac{1}{2} \int_{0}^{\infty} E_{1}(|t-\tau|) f(t) d t \\
J(\tau) & =\Lambda_{\tau}[S]
\end{aligned}
$$

Schwarzschild-Milne equations

- similar analysis for $F(\tau)$ and $K(\tau) \rightarrow$

$$
\begin{aligned}
& F(\tau)=2\left\{\int_{\tau}^{\infty} E_{2}(t-\tau) S(t) d t-\int_{0}^{\tau} E_{2}(\tau-t) S(t) d t\right\} \\
& K(\tau)=\frac{1}{2} \int_{0}^{\infty} E_{3}(|t-\tau|) S(t) d t
\end{aligned}
$$

- and define the operators

$$
\begin{aligned}
& \Phi_{\tau}[f(t)]=2\left\{\int_{\tau}^{\infty} E_{2}(t-\tau) f(t) d t-\int_{0}^{\tau} E_{2}(\tau-t) f(t) d t\right\} \\
& X_{\tau}[f(t)]=\frac{1}{2} \int_{0}^{\infty} E_{3}(|t-\tau|) f(t) d t
\end{aligned}
$$

radiative equilibrium

- assume all energy transported by radiation \rightarrow

$$
\frac{d F}{d z}=0
$$

- so that

$$
F=F_{0}=\sigma T_{\mathrm{eff}}^{4}=\text { const. }
$$

- with

$$
F=\int_{0}^{\infty} F_{\nu} d \nu
$$

radiative equilibrium

- integrate pp RTE

$$
\mu \frac{d I_{\nu}}{d z}=\chi_{\nu}\left(S_{\nu}-I_{\nu}\right)
$$

over $d \Omega d \nu \rightarrow$

$$
\frac{d}{d z} \int_{4 \pi} \mu I d \Omega=\int_{0}^{\infty} \chi_{\nu}\left\{\int_{4 \pi} S_{\nu} d \Omega-\int_{4 \pi} I_{\nu} d \Omega\right\} d \nu
$$

- so that

$$
\frac{d F}{d z}=4 \pi \int_{0}^{\infty} \chi_{\nu} S_{\nu} d \nu-4 \pi \int_{0}^{\infty} \chi_{\nu} J_{\nu} d \nu
$$

radiative equilibrium

- \rightarrow in RE we have the additional condition

$$
\int_{0}^{\infty} \chi_{\nu} S_{\nu} d \nu=\int_{0}^{\infty} \chi_{\nu} J_{\nu} d \nu
$$

radiative equilibrium

- For $S_{\nu}=(1-\epsilon) J_{\nu}+\epsilon B_{\nu}$ this gives

$$
\int_{0}^{\infty} \kappa_{\nu} J_{\nu} d \nu=\int_{0}^{\infty} \kappa_{\nu} B_{\nu} d \nu
$$

- $\int_{0}^{\infty} \kappa_{\nu} J_{\nu} d \nu$ is the total energy absorbed by a volume element
- $\int_{0}^{\infty} \kappa_{\nu} B_{\nu} d \nu$ is the total energy emitted by a volume element

diffusion approximation

- consider $\tau \gg 1$ in a semi-infinite slab
- large depths
- \rightarrow photons trapped
- $\rightarrow I_{\nu}$ nearly isotropic
- $S_{\nu} \rightarrow B_{\nu}$
- use reference point $\tau_{\nu} \gg 1$
- expand S_{ν} around τ_{ν}

$$
S\left(t_{\nu}\right)=\sum_{n=0}^{\infty} \frac{d^{n} B_{\nu}}{d \tau_{\nu}^{n}} \frac{\left(t_{\nu}-\tau_{\nu}\right)^{n}}{n!}
$$

diffusion approximation

- insert series into FS for outgoing radiation $(\mu \geq 0)$

$$
I_{\nu}\left(\tau_{\nu}, \mu\right)=\sum_{n=0}^{\infty} \mu^{n} \frac{d^{n} B_{\nu}}{d \tau_{\nu}^{n}}=B_{\nu}\left(\tau_{\nu}\right)+\mu \frac{d B_{\nu}}{d \tau_{\nu}}+\cdots
$$

- similar for in-going radiation:
- only differences are terms of $O\left(\exp \left(-\tau_{\nu} / \mu\right)\right)$
- $\rightarrow 0$ for $\tau_{\nu} \gg 1$
- \rightarrow above expansion is sufficient also for $\mu \leq 0$

diffusion approximation

- inserting this into equations for moments $J, H, K \rightarrow$

$$
\begin{aligned}
J_{\nu}\left(\tau_{\nu}\right) & =\sum_{n=0}^{\infty} \frac{1}{2 n+1} \frac{d^{(2 n)} B_{\nu}}{d \tau_{\nu}^{(2 n)}} \\
& =B_{\nu}\left(\tau_{\nu}\right)+\frac{1}{3}\left(\frac{d^{2} B_{\nu}}{d \tau_{\nu}^{2}}\right)+\cdots
\end{aligned}
$$

diffusion approximation

$$
\begin{aligned}
H_{\nu}\left(\tau_{\nu}\right) & =\sum_{n=0}^{\infty} \frac{1}{2 n+3} \frac{d^{(2 n+1)} B_{\nu}}{d \tau_{\nu}^{(2 n+1)}} \\
& =\frac{1}{3}\left(\frac{d B_{\nu}}{d \tau_{\nu}}\right)+\cdots \\
K_{\nu}\left(\tau_{\nu}\right) & =\sum_{n=0}^{\infty} \frac{1}{2 n+3} \frac{d^{(2 n)} B_{\nu}}{d \tau_{\nu}^{(2 n)}} \\
& =\frac{1}{3} B_{\nu}\left(\tau_{\nu}\right)+\frac{1}{5}\left(\frac{d^{2} B_{\nu}}{d \tau_{\nu}^{2}}\right)+\cdots
\end{aligned}
$$

diffusion approximation

- convergence of these series is very rapid
- $d^{n} B_{\nu} / d \tau_{\nu}^{n} \approx B_{\nu} / \tau_{\nu}^{n}$
- \rightarrow ratio of successive terms is $O\left(1 / \tau_{\nu}^{2}\right)$
- for large τ_{ν} we need only the leading terms

$$
\begin{aligned}
I_{\nu}\left(\tau_{\nu}\right) & =B_{\nu}\left(\tau_{\nu}\right)+\mu\left(\frac{d B_{\nu}}{d \tau_{\nu}}\right) \\
J_{\nu}\left(\tau_{\nu}\right) & =B_{\nu}\left(\tau_{\nu}\right) \\
H_{\nu}\left(\tau_{\nu}\right) & =\frac{1}{3}\left(\frac{d B_{\nu}}{d \tau_{\nu}}\right) \\
K_{\nu}\left(\tau_{\nu}\right) & =\frac{1}{3} B_{\nu}\left(\tau_{\nu}\right)
\end{aligned}
$$

diffusion approximation

$$
H_{\nu}\left(\tau_{\nu}\right)=\frac{1}{3}\left(\frac{d B_{\nu}}{d \tau_{\nu}}\right)
$$

\rightarrow diffusion equation for the radiative flux $F_{\nu}=4 H_{\nu}$

$$
\begin{aligned}
F_{\nu} & =\frac{4}{3}\left(\frac{d B_{\nu}}{d \tau_{\nu}}\right) \\
& =-\frac{4}{3}\left(\frac{1}{\chi_{\nu}} \frac{d B_{\nu}}{d T}\right)\left(\frac{d T}{d z}\right) \\
& =-D \nabla T
\end{aligned}
$$

diffusion approximation

- in addition

$$
\frac{K_{\nu}\left(\tau_{\nu}\right)}{J_{\nu}\left(\tau_{\nu}\right)}=\frac{1}{3}
$$

- \rightarrow Eddington approximation

