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Topics

I The description of radiation
I specific intensity
I moments of the intensity
I radiation field in TE

I additional literature:
J. Oxenius, ’Kinetic Theory of Particles and Photons’,
Springer, 1986
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The description of radiation

I Start with the
photon distribution function

Φ(~r , ~p, t)

I average number of photons present at time t in
dV = (~r , d3r) with momenta d~p = (~p, d3p)

I neglected polarization
I completely analogous to description of particle gas
I differences:

I photons have zero rest mass
I no photon-photon collisions (0th order)
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specific intensity

I although Φ is perfectly good, historically the intensity is
used

I transform (~p, d3p)→ (ν, dν, ~n, dΩ)

I use photon relations

E = hν
p = hν/v = E/c

to define Iν(~n, ~r , t) through

dNν

dV
= Φ(~r , ~p, t) d3p ≡ 1

hνc
Iν(~n, ~r , t) dνdΩ

where dNν/dV is the photon density ([1/cm3])
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specific intensity

I with

~p =
hν

c
~n

d3p = p2dpdΩ =
h3ν2

c3 dνdΩ

we have
h4

c2 Φ(~r , ~p, t) =
Iν(~n, ~r , t)

ν3

I → Iν/ν
3 is ∝ photon distribution function

I Remark: in a good approximation, Φ(~r , ~p, t) is a
relativistic invariant, i.e., Iν/ν3 is an invariant
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meaning of the specific intensity

I consider
dEν = Iν cos Θ dσ dΩ dt dν

I radiation energy passing through surface element d~σ in
direction ~n = (Θ, ϕ) in time interval dt and frequency
interval dν into solid angle interval dΩ.

I Iν is independent from the distance of an observer to the
emitting surface

I unit of Iν : [erg/s/cm2/sr/Hz]
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meaning of the specific intensity

I Iν defined per unit frequency interval dν
I transformation to unit wavelength interval dλ:

I λ = c/ν → dλ = −c/ν2 dν
I therefore

Iν dν = −Iλ dλ

I unit of Iλ: [erg/s/cm2/sr/cm] or [erg/s/cm2/sr/]
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meaning of the specific intensity

I energy difference between unit dν and dλ!
I → Shape of the same spectrum is different between Iλ

and Iν
I example: maximum of solar spectrum
≈ 4500Å for Iν
≈ 8000Å for Iλ
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Iλ vs. Iν
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mean intensity Jν

I average of Iν with respect to dΩ

Jν =
1
4π

∮
4π
Iν dΩ

I dΩ = −d cos Θ dϕ

I if Iν independent of ϕ (azimuthal angle!):
I define µ = cos Θ→

Jν =
1
4π

∫ ∫
Iν dµdϕ =

1
2

∫ +1

−1
Iν dµ
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mean intensity Jν

I Jν is ∝ radiation energy density Eν

Eν = hν

∮
4π

dNν

dV
dΩ =

1
c

∮
4π
Iν dΩ

therefore
Eν =

4π
c
Jν

I Jν is the 0th moment of Iν

Jν =
1
2

∫
µ0Iν dµ
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radiation flux Fν

I net flux of radiation through a surface element dσ:

~Fν =

∮
4π
Iν~n dΩ

I in 1D the vector ~Fν reduces to

Fν =

∫
µIν dµdϕ

so that (Iν independent of ϕ!)

Fν = 2π
∫
µIν dµ
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radiation flux Fν

I first moment of Iν with respect to µ:

Hν =
1
2

∫
µIν dµ =

1
4π

Fν

I old literature: ’astrophysical flux’

πF = Fν
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Examples for Fν

1. isotropic radiation (TE):

~Fν = ~0

2. radiation flowing outside at top of plane parallel
atmosphere:

Fν = 2π
∫ 1

0
µIν dµ

3. if, in addition, Iν independent of µ:

Fν = πIν
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Iν vs. Fν

I Iν independent of distance to radiating object
Fν ∝ 1/r 2

I Iν can be measured only for resolved sources (solid angle!)
I unresolved sources (most stars) →

only Fν can be measured
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radiation pressure

Pν =
1
c

∮
~nIν~n dΩ

I Pν : radiation pressure tensor
I diagonal elements: radiation pressure normal to x , y , or z

surface
I off-diagonal elements → shear forces
I 1D case:

Pν =
1
c

∫
µ2Iν dµdϕ =

2π
c

∫ +1

−1
µ2Iν dµ
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radiation pressure

I second moment of Iν :

Kν =
1
2

∫
µ2Iν dµ

so that
Pν =

4π
c
Kν
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radiation field in TE

I derive TE value of radiation field →
use photon picture and detailed balance
1. stimulated and spontaneous processes must be

considered
2. only consider absorptive processes (change photon

number density!)
I consider ’reaction’ (bremsstrahlung):

Q + P(E , dE )
 Q + P(E − hν, dE ) + γ(ν, dν)

I Q: heavy (resting) particle
I P : radiating particle (e.g., electron)
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radiation field in TE

I define N(ν): number of photons in (ν, dν) integrated
over all directions

I define G (ν): number of possible photon stages in (ν, dν)

I define
z(ν) =

N(ν)dν

G (ν)dν
=

N(ν)

G (ν)

I analogous definition for P!
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radiation field in TE

I reaction rate of
A + B → C + D

is proportional to
1. N(A)× N(B) (how many chances?)
2. G (C )× G (D) (how many reaction channels)

I Bosons B : 1 + N(B)
G(B)

I Fermions F : 1− N(F )
G(F )

20 / 30



radiation field in TE

I detailed balance →

N(E )G (E − hν)G (ν)[1 + z(ν)] = N(E − hν)N(ν)G (E )

so that

1 + z(ν)

z(ν)
=

z(E − hν)

z(E )
= exp

(
hν

kT

)
(Boltzmann!)
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radiation field in TE

I therefore
z(ν) =

1
exp(hν/kT )− 1

I or
N(ν)dν = G (ν)

1
exp(hν/kT )− 1

dν

I G (ν) is given by

G (ν)dν = 2V
4πp2dp

h3 = V
8πν2

c3 dν

I factor 2→ polarization
I used p = hν/c
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radiation field in TE

I used photon density n(ν) = N(ν)/V gives

n(ν)dν =
8πν2

c3

1
exp(hν/kT )− 1

dν

is the TE value of the photon density (Planck)
I with Eν = 4π/cJν

Jν = Iν = Bν =
2hν3

c2

1
exp(hν/kT )− 1

Planck function
black body radiation
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Planck function
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Bν numerics

I wavelength scale:

Bλ(T , λ) dλ =
2hc2

λ5
dλ

exp(hc/λkT )− 1
=

c1
λ5

dλ

exp(c2/λT )− 1

I ν scale:

Bν(T , ν) dν = c3ν
3 1

exp(c4ν/T )− 1
dν
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Bν numerics

I for λ in [Å] and Bλ in [erg/s/cm2/sr/]:
I c1 = 2hc2 = 1.19× 1027

I c2 = hc/k = 1.44× 108

I for ν in [Hz] and Bν in [erg/s/cm2/sr/Hz]
I c3 = 2h/c2 = 1.47× 10−47

I c4 = h/c = 4.8× 10−11

26 / 30



Bν approximations

I hν/kT � 1 (Rayleigh-Jeans):

Bν →
2kTν2

c2

I hν/kT � 1 (Wien):

Bν →
2hν3

c2 exp(−hν/kT )
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Wien’s law

I maximum of Bλ:

λmT = const. ≈ 5.1× 107 ÅK

I maximum of Bν :

λmT = const. ≈ 2.9× 107 ÅK
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Stefan-Boltzmann law

I flux emerging from a very small ’hole’ in a black body is
given by

Fν = πIν = πBν

I total flux →

F (T ) = π

∫ ∞
0

Bν(T , ν) dν =
2πh
c2

(
kT

h

)4 ∫ ∞
0

x3

exp(x)− 1
dx

with x = hν/kT
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Stefan-Boltzmann law

I
∫∞

0
x3

exp(x)−1 dx = π4/15
I so that

F (T ) =
2π5k4

15h3c2T
4 = σT 4

I σ = 5.67× 10−5 erg/cm2/s/K4: Stefan’s constant
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