Stellar/Planetary Atmospheres
 Part 01: description of radiation

Peter Hauschildt yeti@hs.uni-hamburg.de

Hamburger Sternwarte

Gojenbergsweg 112
21029 Hamburg
16. April 2018

Topics

- The description of radiation
- specific intensity
- moments of the intensity
- radiation field in TE
- additional literature:
J. Oxenius, 'Kinetic Theory of Particles and Photons', Springer, 1986

The description of radiation

- Start with the photon distribution function

$$
\Phi(\vec{r}, \vec{p}, t)
$$

- average number of photons present at time t in $d V=\left(\vec{r}, d^{3} r\right)$ with momenta $d \vec{p}=\left(\vec{p}, d^{3} p\right)$
- neglected polarization
- completely analogous to description of particle gas
- differences:
- photons have zero rest mass
- no photon-photon collisions ($0^{\text {th }}$ order)

specific intensity

- although Φ is perfectly good, historically the intensity is used
- transform $\left(\vec{p}, d^{3} p\right) \rightarrow(\nu, d \nu, \vec{n}, d \Omega)$
- use photon relations

$$
\begin{aligned}
E & =h \nu \\
p & =h \nu / v=E / c
\end{aligned}
$$

to define $I_{\nu}(\vec{n}, \vec{r}, t)$ through

$$
\frac{d N_{\nu}}{d V}=\Phi(\vec{r}, \vec{p}, t) d^{3} p \equiv \frac{1}{h \nu c} I_{\nu}(\vec{n}, \vec{r}, t) d \nu d \Omega
$$

where $d N_{\nu} / d V$ is the photon density $\left(\left[1 / \mathrm{cm}^{3}\right]\right)$

specific intensity

- with

$$
\begin{aligned}
\vec{p} & =\frac{h \nu}{c} \vec{n} \\
d^{3} p & =p^{2} d p d \Omega=\frac{h^{3} \nu^{2}}{c^{3}} d \nu d \Omega
\end{aligned}
$$

we have

$$
\frac{h^{4}}{c^{2}} \Phi(\vec{r}, \vec{p}, t)=\frac{I_{\nu}(\vec{n}, \vec{r}, t)}{\nu^{3}}
$$

$\rightarrow \rightarrow I_{\nu} / \nu^{3}$ is \propto photon distribution function

- Remark: in a good approximation, $\Phi(\vec{r}, \vec{p}, t)$ is a relativistic invariant, i.e., I_{ν} / ν^{3} is an invariant

meaning of the specific intensity

- consider

$$
d E_{\nu}=I_{\nu} \cos \Theta d \sigma d \Omega d t d \nu
$$

- radiation energy passing through surface element $d \vec{\sigma}$ in direction $\vec{n}=(\Theta, \varphi)$ in time interval $d t$ and frequency interval $d \nu$ into solid angle interval $d \Omega$.
- I_{ν} is independent from the distance of an observer to the emitting surface
- unit of $I_{\nu}:\left[\mathrm{erg} / \mathrm{s} / \mathrm{cm}^{2} / \mathrm{sr} / \mathrm{Hz}\right]$

meaning of the specific intensity

- I_{ν} defined per unit frequency interval $d \nu$
- transformation to unit wavelength interval $d \lambda$:
- $\lambda=c / \nu \rightarrow d \lambda=-c / \nu^{2} d \nu$
- therefore

$$
I_{\nu} d \nu=-I_{\lambda} d \lambda
$$

- unit of $I_{\lambda}:\left[\mathrm{erg} / \mathrm{s} / \mathrm{cm}^{2} / \mathrm{sr} / \mathrm{cm}\right]$ or $\left[\mathrm{erg} / \mathrm{s} / \mathrm{cm}^{2} / \mathrm{sr} /\right]$

meaning of the specific intensity

- energy difference between unit $d \nu$ and $d \lambda$!
- \rightarrow Shape of the same spectrum is different between I_{λ} and I_{ν}
- example: maximum of solar spectrum
$\approx 4500 \AA$ for I_{ν}
$\approx 8000 \AA$ for I_{λ}
I_{λ} vs. I_{ν}

Fig. 10.4. The shape of a steltar energy distribution can look very different according to which coordinates are used. Those in Fig. 10. 3 and the four shown here are the most common.

mean intensity J_{ν}

- average of I_{ν} with respect to $d \Omega$

$$
J_{\nu}=\frac{1}{4 \pi} \oint_{4 \pi} I_{\nu} d \Omega
$$

- $d \Omega=-d \cos \Theta d \varphi$
- if I_{ν} independent of φ (azimuthal angle!):
- define $\mu=\cos \Theta \rightarrow$

$$
J_{\nu}=\frac{1}{4 \pi} \iint I_{\nu} d \mu d \varphi=\frac{1}{2} \int_{-1}^{+1} I_{\nu} d \mu
$$

mean intensity J_{ν}

- J_{ν} is \propto radiation energy density E_{ν}

$$
E_{\nu}=h \nu \oint_{4 \pi} \frac{d N_{\nu}}{d V} d \Omega=\frac{1}{c} \oint_{4 \pi} I_{\nu} d \Omega
$$

therefore

$$
E_{\nu}=\frac{4 \pi}{c} J_{\nu}
$$

- J_{ν} is the $0^{\text {th }}$ moment of I_{ν}

$$
J_{\nu}=\frac{1}{2} \int \mu^{0} I_{\nu} d \mu
$$

radiation flux F_{ν}

- net flux of radiation through a surface element $d \sigma$:

$$
\vec{F}_{\nu}=\oint_{4 \pi} I_{\nu} \vec{n} d \Omega
$$

- in 1D the vector \vec{F}_{ν} reduces to

$$
F_{\nu}=\int \mu I_{\nu} d \mu d \varphi
$$

so that (I_{ν} independent of $\varphi!$)

$$
F_{\nu}=2 \pi \int \mu I_{\nu} d \mu
$$

radiation flux F_{ν}

- first moment of I_{ν} with respect to μ :

$$
H_{\nu}=\frac{1}{2} \int \mu I_{\nu} d \mu=\frac{1}{4 \pi} F_{\nu}
$$

- old literature: 'astrophysical flux'

$$
\pi \mathcal{F}=F_{\nu}
$$

Examples for F_{ν}

1. isotropic radiation (TE):

$$
\vec{F}_{\nu}=\overrightarrow{0}
$$

2. radiation flowing outside at top of plane parallel atmosphere:

$$
F_{\nu}=2 \pi \int_{0}^{1} \mu I_{\nu} d \mu
$$

3. if, in addition, I_{ν} independent of μ :

$$
F_{\nu}=\pi I_{\nu}
$$

- I_{ν} independent of distance to radiating object
$F_{\nu} \propto 1 / r^{2}$
- I_{ν} can be measured only for resolved sources (solid angle!)
- unresolved sources (most stars) \rightarrow only F_{ν} can be measured

radiation pressure

$$
P_{\nu}=\frac{1}{c} \oint \vec{n} I_{\nu} \vec{n} d \Omega
$$

- P_{ν} : radiation pressure tensor
- diagonal elements: radiation pressure normal to x, y, or z surface
- off-diagonal elements \rightarrow shear forces
- 1D case:

$$
P_{\nu}=\frac{1}{c} \int \mu^{2} I_{\nu} d \mu d \varphi=\frac{2 \pi}{c} \int_{-1}^{+1} \mu^{2} I_{\nu} d \mu
$$

radiation pressure

- second moment of I_{ν} :

$$
K_{\nu}=\frac{1}{2} \int \mu^{2} I_{\nu} d \mu
$$

so that

$$
P_{\nu}=\frac{4 \pi}{c} K_{\nu}
$$

radiation field in TE

- derive TE value of radiation field \rightarrow use photon picture and detailed balance

1. stimulated and spontaneous processes must be considered
2. only consider absorptive processes (change photon number density!)

- consider 'reaction' (bremsstrahlung):

$$
Q+P(E, d E) \rightleftharpoons Q+P(E-h \nu, d E)+\gamma(\nu, d \nu)
$$

- Q: heavy (resting) particle
- P: radiating particle (e.g., electron)

radiation field in TE

- define $N(\nu)$: number of photons in $(\nu, d \nu)$ integrated over all directions
- define $G(\nu)$: number of possible photon stages in $(\nu, d \nu)$
- define

$$
z(\nu)=\frac{N(\nu) d \nu}{G(\nu) d \nu}=\frac{N(\nu)}{G(\nu)}
$$

- analogous definition for P !

radiation field in TE

- reaction rate of

$$
A+B \rightarrow C+D
$$

is proportional to

1. $N(A) \times N(B)$ (how many chances?)
2. $G(C) \times G(D)$ (how many reaction channels)

- Bosons $B: 1+\frac{N(B)}{G(B)}$
- Fermions $F: 1-\frac{N(F)}{G(F)}$

radiation field in TE

- detailed balance \rightarrow

$$
N(E) G(E-h \nu) G(\nu)[1+z(\nu)]=N(E-h \nu) N(\nu) G(E)
$$

so that

$$
\frac{1+z(\nu)}{z(\nu)}=\frac{z(E-h \nu)}{z(E)}=\exp \left(\frac{h \nu}{k T}\right)
$$

(Boltzmann!)

radiation field in TE

- therefore

$$
z(\nu)=\frac{1}{\exp (h \nu / k T)-1}
$$

- or

$$
N(\nu) d \nu=G(\nu) \frac{1}{\exp (h \nu / k T)-1} d \nu
$$

- $G(\nu)$ is given by

$$
G(\nu) d \nu=2 V \frac{4 \pi p^{2} d p}{h^{3}}=V \frac{8 \pi \nu^{2}}{c^{3}} d \nu
$$

- factor $2 \rightarrow$ polarization
- used $p=h \nu / c$

radiation field in TE

- used photon density $n(\nu)=N(\nu) / V$ gives

$$
n(\nu) d \nu=\frac{8 \pi \nu^{2}}{c^{3}} \frac{1}{\exp (h \nu / k T)-1} d \nu
$$

is the TE value of the photon density (Planck)

- with $E_{\nu}=4 \pi / c J_{\nu}$

$$
J_{\nu}=I_{\nu}=B_{\nu}=\frac{2 h \nu^{3}}{c^{2}} \frac{1}{\exp (h \nu / k T)-1}
$$

Planck function
black body radiation

Planck function

Fig. 6.2. The specific intensity emitted by a black body is shown for the three temperatures indicated. The scaling of Wein's latw (eq. (6.1)) can be seen in the shape of the curves. The area under the curves obeys the Stefan-Boltzmann law (cq. (6.3)).

B_{ν} numerics

- wavelength scale:

$$
B_{\lambda}(T, \lambda) d \lambda=\frac{2 h c^{2}}{\lambda^{5}} \frac{d \lambda}{\exp (h c / \lambda k T)-1}=\frac{c_{1}}{\lambda^{5}} \frac{d \lambda}{\exp \left(c_{2} / \lambda T\right)-1}
$$

- ν scale:

$$
B_{\nu}(T, \nu) d \nu=c_{3} \nu^{3} \frac{1}{\exp \left(c_{4} \nu / T\right)-1} d \nu
$$

B_{ν} numerics

- for λ in $[\AA]$ and B_{λ} in $\left[\mathrm{erg} / \mathrm{s} / \mathrm{cm}^{2} / \mathrm{sr} /\right]$:
- $c_{1}=2 h c^{2}=1.19 \times 10^{27}$
- $c_{2}=h c / k=1.44 \times 10^{8}$
- for ν in $[\mathrm{Hz}]$ and B_{ν} in $\left[\mathrm{erg} / \mathrm{s} / \mathrm{cm}^{2} / \mathrm{sr} / \mathrm{Hz}\right]$
- $c_{3}=2 h / c^{2}=1.47 \times 10^{-47}$
- $c_{4}=h / c=4.8 \times 10^{-11}$

B_{ν} approximations

- h $/ k T \ll 1$ (Rayleigh-Jeans):

$$
B_{\nu} \rightarrow \frac{2 k T \nu^{2}}{c^{2}}
$$

- h $/ k T \gg 1$ (Wien):

$$
B_{\nu} \rightarrow \frac{2 h \nu^{3}}{c^{2}} \exp (-h \nu / k T)
$$

Wien's law

- maximum of B_{λ} :

$$
\lambda_{m} T=\text { const. } \approx 5.1 \times 10^{7} \AA \mathrm{~K}
$$

- maximum of B_{ν} :

$$
\lambda_{m} T=\text { const. } \approx 2.9 \times 10^{7} \AA \mathrm{~K}
$$

Stefan-Boltzmann law

- flux emerging from a very small 'hole' in a black body is given by

$$
F_{\nu}=\pi I_{\nu}=\pi B_{\nu}
$$

- total flux \rightarrow
$F(T)=\pi \int_{0}^{\infty} B_{\nu}(T, \nu) d \nu=\frac{2 \pi h}{c^{2}}\left(\frac{k T}{h}\right)^{4} \int_{0}^{\infty} \frac{x^{3}}{\exp (x)-1} d x$
with $x=h \nu / k T$

Stefan-Boltzmann law

- $\int_{0}^{\infty} \frac{x^{3}}{\exp (x)-1} d x=\pi^{4} / 15$
- so that

$$
F(T)=\frac{2 \pi^{5} k^{4}}{15 h^{3} c^{2}} T^{4}=\sigma T^{4}
$$

- $\sigma=5.67 \times 10^{-5} \mathrm{erg} / \mathrm{cm}^{2} / \mathrm{s} / \mathrm{K}^{4}$. Stefan's constant

