
1 Problem set 1: Classic radiation transport

1.1 Classic formal solution of the radiative transfer equation

The classical formal solution of the plane parallel radiative transfer equation is

given by

J(τ) =
1

2

{∫ ∞
τ

E1(t − τ)S(t) dt +

∫ τ

0

E1(τ − t)S(t) dt

}
=

1

2

∫ ∞
0

E1(|t − τ |)S(t) dt

with the standard form form of the 1st exponential integral:

En(x) =

∫ ∞
1

t−n exp(−xt) dt

Write a python class (will be useful later) to

1. Generate a logarithmic τ grid: log10 spaced points from τmin to τmax for

Nlayer total points (all parameters on instantiation), set the outermost point

τ = 0.

2. Prepare class variables (numpy arrays) for B, J, S, H, K, etc. Set B = J =

S = 1 on instantiation (we’ll start testing with something simple).

3. Write a method to realize the kernel for the classic formal solution, i.e.,

E1(|t − τ |)S(t), for any argument t (note: the modules sympy and in par-

ticular mpmath may be useful to save yourself work).

4. Write a method to compute J(τ) for all points of your optical depth grid for

a given, fixed, S(τ). Note: again sympy and mpmath may be useful for easy

numerical quadrature but beware.

5. plot the resulting J(τ)

1.2 Classic Λ iterations

Use your code to implement a Λ iteration and calculate the results for S = (1 −
ε)J + εB and ε = 1, 0.5, 0.1, 10−2, 10−4 (independent of τ for simplicity).

Plot the convergence behaviors (corrections max(|∆J|/J) as functions of iteration

number). Limit the number of iterations to 100 ... and profile the runs to see

where the time is burnt (module ’cProfile’ works well enough).


