1 Problem set 1: Classic radiation transport

1.1 Classic formal solution of the radiative transfer equation

The classical formal solution of the plane parallel radiative transfer equation is given by

$$J(\tau) = \frac{1}{2} \left\{ \int_{\tau}^{\infty} E_1(t-\tau)S(t) dt + \int_{0}^{\tau} E_1(\tau-t)S(t) dt \right\}$$

= $\frac{1}{2} \int_{0}^{\infty} E_1(|t-\tau|)S(t) dt$

with the standard form form of the 1st exponential integral:

$$E_n(x) = \int_1^\infty t^{-n} \exp(-xt) \, dt$$

Write a python class (will be useful later) to

- 1. Generate a logarithmic τ grid: \log_{10} spaced points from τ_{\min} to τ_{\max} for N_{layer} total points (all parameters on instantiation), set the outermost point $\tau = 0$.
- 2. Prepare class variables (numpy arrays) for B, J, S, H, K, etc. Set B = J = S = 1 on instantiation (we'll start testing with something simple).
- 3. Write a method to realize the kernel for the classic formal solution, i.e., $E_1(|t \tau|)S(t)$, for any argument t (note: the modules sympy and in particular mpmath may be useful to save yourself work).
- 4. Write a method to compute $J(\tau)$ for all points of your optical depth grid for a given, fixed, $S(\tau)$. Note: again sympy and mpmath may be useful for easy numerical quadrature but beware.
- 5. plot the resulting $J(\tau)$

1.2 Classic \land iterations

Use your code to implement a Λ iteration and calculate the results for $S = (1 - \epsilon)J + \epsilon B$ and $\epsilon = 1$, 0.5, 0.1, 10^{-2} , 10^{-4} (independent of τ for simplicity). Plot the convergence behaviors (corrections max $(|\Delta J|/J)$ as functions of iteration number). Limit the number of iterations to 100 ... and profile the runs to see where the time is burnt (module 'cProfile' works well enough).