
1 Problem set 2: Hints & Tipps

1.1 Formal solution of the radiative transfer equation

• re-use the class (or code) you wrote for the previous problem, in particular

the tau grid and the infrastructure

• start by generating the points µj and weights wj for the Gauss quadrature

that replaces the J integration J(τ) = 1/2
∑
wj I(µj , τ). There’s a numpy

method for this:

self.mu, self.w = np.polynomial.legendre.leggauss(nmu)

• You will need to write a routine that computes I(j, i) for all µj and τi

• This is done by compute I(j, :) for each j in succession by applying the

scheme discussed in the lectures and the problem sheet.

• For this you need the coefficients αi , βi , γi . The method computeFScoeffs

in the template does that for you, you need top provide Si−1, Si , Si+1 in Sm,

S0, Sp and τprev→curr and τcurr→next in dtau, dtau1. Set self.taulin=1e-2

and self.use Bezier = False.

• It is easier to first (for a given direction µj) compute the αi , βi , γi for all i

and store them in numpy arrays and then in a second step to compute the

I(j, i) for all i and given j .

• Keep in mind that the direction of solving changes depending on the sign

of µj . For µ > 0 you need to got from large τ towards zero, for µ < 0 it

is from zero to τmax. Similar for γ. Remember that the solution follows the

propagation of the photons. α always considers the previous point, that can

be either i− or i + 1, depending on sign(µj).

• With the routine computing I(i , j), the formal solution is now easy, just call

it for the different j and compute J(i) =
∑
j wj I(j, i). Note: you do NOT

need to store I(j, i), just call your routine and the contributions for J on the

fly. For this exercise it’s easy to just store the full I(j, i), but imagine you

have millions of τ points (3D models!) and thousands of j ...

• In general, it is best to scetch the solution on a (big) sheet of paper. Think

first, code later. In a variation of a quote from Stanislav Lem: Think more,

code less.


